Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (7): 1215-1219.doi: 10.3864/j.issn.0578-1752.2024.07.001

• SPECIAL FOCUS: SEED GERMINATION AND PRE-HARVEST SPROUTING • Previous Articles     Next Articles

Seed Germination and Pre-Harvest Sprouting

DONG HuiXue1,3(), WANG JiRui1,2,3,4()   

  1. 1 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130
    2 College of Agronomy, Sichuan Agricultural University, Chengdu 611130
    3 Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130
    4 Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu 611130
  • Received:2024-02-02 Accepted:2024-03-11 Online:2024-04-01 Published:2024-04-09
  • Contact: WANG JiRui
[1]
BEWLEY J D, BLACK M. Seeds:Physiology of Development and Germination. 2nd ed. New York: Plenum Press, 1994.
[2]
连艺佳, 刘瑞, 王嘉杰, 徐文伊, 晏迪, 王婷, 洪越, 王晔, 段留生, 李润枝. 低温对冬小麦萌发生理特性的影响. 北京农学院学报, 2023, 38(4): 1-7.
LIAN Y J, LIU R, WANG J J, XU W Y, YAN D, WANG T, HONG Y, WANG Y, DUAN L S, LI R Z. Effect of low temperature on growth and physiological characteristics of winter wheat during germination. Journal of Beijing University of Agriculture, 2023, 38(4): 1-7. (in Chinese)
[3]
王慰亲. 种子引发促进直播早稻低温胁迫下萌发出苗的机理研究[D]. 武汉: 华中农业大学, 2019.
WANG W Q. Mechanisms underlying the effects of seed priming on the establishment of direct-seeded early season rice under chilling stress[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
[4]
DEBEAUJON I, KOORNNEEF M. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiology, 2000, 122(2): 415-424.

doi: 10.1104/pp.122.2.415
[5]
MIURA K, TADA Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 2014, 5: 4.

doi: 10.3389/fpls.2014.00004 pmid: 24478784
[6]
王立红, 李星星, 孙影影, 阿曼古丽·买买提阿力, 张巨松. 外源水杨酸对NaCl胁迫下棉花幼苗生长生理特性的影响. 西北植物学报, 2017, 37(1): 154-162.
WANG L H, LI X X, SUN Y Y, MAIMAITIALI AMGL, ZHANG J S. Effects of exogenous salicylic acid on the physiological characteristics and growth of cotton seedlings under NaCl stress. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(1): 154-162. (in Chinese)
[7]
ALAM M, HAYAT K, ULLAH I, SAJID M, AHMAD M, BASIT A, AHMAD I, MUHAMMAD A, AKBAR S, HUSSAIN Z. Improving okra (Abelmoschus esculentus L.) growth and yield by mitigating drought through exogenous application of salicylic acid. Fresenius Environmental Bulletin, 2020, 29(1): 529-535.
[8]
LI Z G, XU J, GAO Y, WANG C, GUO G Y, LUO Y, HUANG Y T, HU W M, SHETEIWY M S, GUAN Y J, HU J. The synergistic priming effect of exogenous salicylic acid and H2O2 on chilling tolerance enhancement during maize (Zea mays L.) seed germination. Frontiers in Plant Science, 2017, 8: 1153.

doi: 10.3389/fpls.2017.01153
[9]
侯林欣, 吕强, 黄明, 焦念元, 尹飞, 刘领, 吕梦, 付国占. 不同温度水杨酸引发对干旱胁迫下玉米种子发芽及幼苗生理特性的影响. 中国农学通报, 2021, 37(19): 13-21.

doi: 10.11924/j.issn.1000-6850.casb2020-0504
HOU L X, Q, HUANG M, JIAO N Y, YIN F, LIU L, M, FU G Z. SA priming of maize seeds at different temperature under drought stress: Effects on seed germination and seedling physiological characteristics. Chinese Agricultural Science Bulletin, 2021, 37(19): 13-21. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2020-0504
[10]
常云霞, 徐克东, 陈璨, 陈龙. 水杨酸对低温胁迫下大豆幼苗生长抑制的缓解效应. 大豆科学, 2012, 31(6): 927-931.
CHANG Y X, XU K D, CHEN C, CHEN L. Salicylic acid mitigating the inhibition of low temperature stress to soybean seedlings. Soybean Science, 2012, 31(6): 927-931. (in Chinese)
[11]
NAZARI R, PARSA S, TAVAKKOL AFSHARI R, MAHMOODI S, SEYYEDI S M. Salicylic acid priming before and after accelerated aging process increases seedling vigor in aged soybean seed. Journal of Crop Improvement, 2020, 34(2): 218-237.

doi: 10.1080/15427528.2019.1710734
[12]
MARTHANDAN V, GEETHA R, KUMUTHA K, RENGANATHAN V G, KARTHIKEYAN A, RAMALINGAM J. Seed priming: A feasible strategy to enhance drought tolerance in crop plants. International Journal of Molecular Sciences, 2020, 21(21): 8258.
[13]
YANG Z G, ZHI P, F CHANG C. Priming seeds for the future: Plant immune memory and application in crop protection. Frontiers in Plant Science, 2022, 13: 961840.

doi: 10.3389/fpls.2022.961840
[14]
NIE L X, SONG S K, YIN Q, ZHAO T C, LIU H Y, HE A B, WANG W Q. Enhancement in seed priming-induced starch degradation of rice seed under chilling stress via GA-mediated α-amylase expression. Rice, 2022, 15(1): 19.
[15]
陈兵先, 张琪, 戴彰言, 周旭, 刘军. 水杨酸引发提高低温下水稻种子萌发活力的生理与分子效应. 中国农业科学, 2024, 57(7): 1220-1236. doi: 10.3864/j.issn.0578-1752.2024.07.002.
CHEN B X, ZHANG Qi, DAI Z Y, ZHOU X, LIU J. Physiological and molecular effects of salicylic acid on rice seed germination at low temperature. Scientia Agricultura Sinica, 2024, 57(7): 1220-1236. doi: 10.3864/j.issn.0578-1752.2024.07.002. (in Chinese)
[16]
VETCH J M, STOUGAARD R N, MARTIN J M, GIROUX M J. Review: Revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.). Plant Science, 2019, 281: 180-185.

doi: 10.1016/j.plantsci.2019.01.004
[17]
LEE G A, JEON Y A, LEE H S, HYUN D Y, LEE J R, LEE M C, LEE S Y, MA K H, KOH H J. New genetic loci associated with preharvest sprouting and its evaluation based on the model equation in rice. Frontiers in Plant Science, 2017, 8: 1393.

doi: 10.3389/fpls.2017.01393
[18]
BENECH-ARNOLD R L, RODRÍGUEZ M V. Pre-harvest sprouting and grain dormancy in Sorghum bicolor: What have we learned? Frontiers in Plant Science, 2018, 9: 811.

doi: 10.3389/fpls.2018.00811
[19]
ULLRICH S E, CLANCY J A, DEL BLANCO I A, LEE H, JITKOV V A, HAN F, KLEINHOFS A, MATSUI K. Genetic analysis of preharvest sprouting in a six-row barley cross. Molecular Breeding, 2008, 21(2): 249-259.

doi: 10.1007/s11032-007-9125-7
[20]
肖世和, 闫长生, 张海萍, 孙果忠. 小麦穗发芽研究. 北京: 中国农业科学技术出版社, 2004.
XIAO S H, YAN C S, ZHANG H P, SUN G Z. Study on Pre-Harvest Sprouting of Wheat. Beijing: China Agricultural Science and Technology Press, 2004. (in Chinese)
[21]
张宗敏, 陈巧艳, 李新华, 乔红, 欧行奇. 豫北地区不同小麦品种穗发芽初步研究. 农业科技通讯, 2016(11): 60-63.
ZHANG Z M, CHEN Q Y, LI X H, QIAO H, OU X Q. Preliminary study on pre-harvest germination of different wheat varieties in northern Henan Province. Bulletin of Agricultural Science and Technology, 2016(11): 60-63. (in Chinese)
[22]
唐豪, 周勇, 谭志, 杨力生, 郭晓江, 王际睿. 部分小麦产区穗发芽危害状况调查及应对建议. 农家科技, 2018(7): 36-37.
TANG H, ZHOU Y, TAN Z, YANG L S, GUO X J, WANG J R. Investigation of pre-harvest sprouting hazards in some wheat producing areas and suggestions for countermeasures. Agricultural Science and Technology, 2018, 7: 36-37. (in Chinese)
[23]
朱利广, 张玉坤, 马庆, 王勖, 晁漫宁. 安徽省冬小麦品种大田条件下穗发芽抗性研究. 中国种业, 2023(9): 66-69.
ZHU L G, ZHANG Y K, MA Q, WANG X, CHAO M N. Research of pre-harvest sprouting resistances of winter wheat varieties under field conditions in Anhui province. China Seed Industry, 2023(9): 66-69. (in Chinese)
[24]
FINKELSTEIN R, REEVES W, ARIIZUMI T, STEBER C. Molecular aspects of seed dormancy. Annual Review of Plant Biology, 2008, 59: 387-415.

doi: 10.1146/annurev.arplant.59.032607.092740 pmid: 18257711
[25]
张海峰, 卢荣禾. 小麦穗发芽抗性机理与遗传研究. 作物学报, 1993, 19(6): 523-530.
ZHANG H F, LU R H. Study on the mechanism of the resistance to preharvest sprouting and inheritance in wheat. Acta Agronomica Sinica, 1993, 19(6): 523-530. (in Chinese)
[26]
TAI L, WANG H J, XU X J, SUN W H, JU L, LIU W T, LI W Q, SUN J Q, CHEN K M. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. Journal of Experimental Botany, 2021, 72(8): 2857-2876.

doi: 10.1093/jxb/erab024 pmid: 33471899
[27]
董慧雪, 陈倩, 郭晓江, 王际睿. 小麦穗发芽抗性机制及抗性育种研究. 中国农业科学, 2024, 57(7): 1237-1254. doi: 10.3864/j.issn.0578-1752.2024.07.003.
DONG H X, CHEN Q, GUO X J, WANG J R. Research on the mechanisms of pre-harvest sprouting and resistant breeding in wheat. Scientia Agricultura Sinica, 2024, 57(7): 1237-1254. doi: 10.3864/j.issn.0578-1752.2024.07.003. (in Chinese)
[28]
ZHANG X Q, LI C D, TAY A, LANCE R, MARES D, CHEONG J, CAKIR M, MA J H, APPELS R. A new PCR-based marker on chromosome 4AL for resistance to pre-harvest sprouting in wheat (Triticum aestivum L.). Molecular Breeding, 2008, 22(2): 227-236.

doi: 10.1007/s11032-008-9169-3
[29]
CHEN C X, CAI S B, BAI G H. A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Molecular Breeding, 2008, 21(3): 351-358.

doi: 10.1007/s11032-007-9135-5
[30]
WANG X Y, LIU H, MIA M S, SIDDIQUE K H M, YAN G J. Development of near-isogenic lines targeting a major QTL on 3AL for pre-harvest sprouting resistance in bread wheat. Crop and Pasture Science, 2018, 69(9): 864.
[31]
TORADA A, IKEGUCHI S, KOIKE M. Mapping and validation of PCR-based markers associated with a major QTL for seed dormancy in wheat. Euphytica, 2005, 143(3): 251-255.

doi: 10.1007/s10681-005-7872-2
[32]
MOULLET O, BERMÚDEZ G D, FOSSATI D, BRABANT C, MASCHER F, SCHORI A. Pyramiding wheat pre-harvest sprouting resistance genes in triticale breeding. Molecular Breeding, 2022, 42(10): 60.
[33]
刘泽厚, 王琴, 叶美金, 万洪深, 杨宁, 杨漫宇, 杨武云, 李俊. 人工合成小麦和地方品种穗发芽抗性育种利用效率. 中国农业科学, 2024, 57(7): 1255-1266. doi: 10.3864/j.issn.0578-1752.2024.07.004.
LIU Z H, WANG Q, YE M J, WAN H S, YANG N, YANG M Y, YANG W Y, LI J. Utilization efficiency of improving the resistance for pre-harvest sprouting by synthetic hexaploid wheat and Chinese wheat landrace. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266. doi: 10.3864/j.issn.0578-1752.2024.07.004. (in Chinese)
[34]
ŽILIĆ S, JANKOVIĆ M, BARAĆ M, PEŠIĆ M, KONIĆ-RISTIĆ A, ŠUKALOVIĆ V H T. Effects of enzyme activities during steeping and sprouting on the solubility and composition of proteins, their bioactivity and relationship with the bread making quality of wheat flour. Food &Function, 2016, 7(10): 4323-4331.
[35]
MARTI A, CARDONE G, PAGANI M A, CASIRAGHI M C. Flour from sprouted wheat as a new ingredient in bread-making. LWT, 2018, 89: 237-243.

doi: 10.1016/j.lwt.2017.10.052
[36]
OLAERTS H, VANDEKERCKHOVE L, COURTIN C M. A closer look at the bread making process and the quality of bread as a function of the degree of preharvest sprouting of wheat (Triticum aestivum). Journal of Cereal Science, 2018, 80: 188-197.

doi: 10.1016/j.jcs.2018.03.004
[37]
LORENZ K, COLLINS F, KULP K. Sprouting of cereal grains-effects on starch characteristics. Starch-Stärke, 1981, 33(6): 183-187.

doi: 10.1002/star.v33:6
[38]
AGRAHAR-MURUGKAR D, GULATI P, KOTWALIWALE N, GUPTA C. Evaluation of nutritional, textural and particle size characteristics of dough and biscuits made from composite flours containing sprouted and malted ingredients. Journal of Food Science and Technology, 2015, 52(8): 5129-5137.

doi: 10.1007/s13197-014-1597-y
[39]
梁王壮, 唐雅楠, 刘佳荟, 郭晓江, 董慧雪, 祁鹏飞, 王际睿. 小麦发芽对面粉质量与加工产品品质的影响. 中国农业科学, 2024, 57(7): 1267-1280. doi: 10.3864/j.issn.0578-1752.2024.07.005.
LIANG W Z, TANG Y N, LIU J H, GUO X J, DONG H X, QI P F, WANG J R. Effect of flour and cooking/baking qualities by sprouted wheat. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280. doi: 10.3864/j.issn.0578-1752.2024.07.005. (in Chinese)
[40]
XU F, TANG J, WANG S, CHENG X, WANG H R, OU S J, GAO S P, LI B S, QIAN Y W, GAO C X, CHU C C. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nature Genetics, 2022, 54: 1972-1982.

doi: 10.1038/s41588-022-01240-7 pmid: 36471073
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!