Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (10): 1982-1994.doi: 10.3864/j.issn.0578-1752.2018.10.017

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

The Solid-State Fermentation Process of Rhodotorula Mucilaginosa for Producing Carotenoids

JiaJing SUN(), Mao LI, ZhiHong SUN(), ZhiRu TANG, XiangXin ZHANG, JinChao CHEN   

  1. College of Animal Science and Technology/Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715
  • Received:2017-10-09 Accepted:2018-03-05 Online:2018-05-16 Published:2018-05-16

Abstract:

【Objective】 This study was performed to enhance carotenoid yield, to improve nutritional value of fermentation product, and to reduce the production cost of carotenoids through optimizing solid-state fermentation substrate and fermentation conditions of Rhodotorula mucilaginosa.【Method】 In this study, Rhodotorula mucilaginosa TZR2014 was used as a inoculant. First, the Mixture-Design of Design-Expert software was used to design the fermentation substrate, and the contents of ingredients as followed: 50%-80% wheat bran, 6%-20% soybean meal, 3%-15% maize flour, 2%-14% rice bran, 2%-10% maize syrup, 0.4%-2.5% ammonium sulfate, 0.05%-0.5% monopotassium phosphate, and 0.03%-0.3% magnesium sulfate. Then the optimal ratio of ingredients in substrate was determined according to the carotenoid yield. Based on this result, an L16(45) orthogonal design was used to optimize the fermentation conditions, including inoculum (5.0%-12.5%), fermentation time (60.0-96.0 h), fermentation temperature (26-32℃), and fermentation pH (60.0%-75.0%). Finally, the number of Rhodotorula mucilaginosa and contents of carotenoids, crude fiber, crude protein, water, crude fat, ash, calcium, phosphorus, and amino acids in fermentation product were determined to evaluate the effects of the optimized fermentation process on the nutritional values of fermentation product. 【Result】 The results showed that there was a positive correlation between maize starch content in substrate and carotenoid content in fermentation product (r=0.344, P=0.040) or between rice bran content in fermentation substrate and carotenoid content in fermentation product (r=0.329, P=0.050). There was a significantly negative correlation between carotenoid yield and the content of wheat bran in solid-state fermentation substrate (r=-0.336, P=0.045). There was a positive correlation between the number of live bacteria of Rhodotorula mucilaginosa in fermentation product and the content of soybean meal in fermentation substrate (r=0.510, P=0.001). Inoculum, fermentation temperature, pH, and moisture had extremely significant impacts on the number of Rhodotorula mucilaginosa (P<0.01), thereinto, fermentation temperature had the greatest effect on the number of Rhodotorula mucilaginosa, followed by moisture, inoculum, and pH. Fermentation time, fermentation temperature, and pH had extremely significant influences on the carotenoid content in the fermentention product (P<0.01), and fermentation temperature had the greatest influence on the carotenoid content in the fermented product, followed by pH and fermentation time. After the optimization of the fermentation process, the carotenoid yield by Rhodotorula mucilaginosa TZR2014 was increased to 4 535 μg·kg-1; the bacteria number was increased to 3.79×109 CFU/kg; the contents of crude fiber, crude protein, ash, threonine, glutamate, and proline in fermentation product were significantly increased (P<0.05), meanwhile, the contents of histidine, water, and crude fat was significantly decreased (P<0.05). 【Conclusion】 The optimal ratio of solid-state fermentation substrate for Rhodotorula mucilaginosa was as followed: 52.5% wheat bran, 20.0% soybean meal, 3.0% maize flour, 14.0% rice bran, 10.0% maize syrup, 0.4% ammonium sulfate, 0.05% monopotassium phosphate, and 0.04% magnesium sulfate. The optimal fermentation conditions were as followed: inoculum 5.0%, fermentation time 72 h, fermentation temperature 28.0℃, pH 6.0, and moisture 60.0%. The results suggested that the optimized fermentation process of Rhodotorula mucilaginosa enhanced the yield of carotenoids and improved the nutritional value of fermentation product.

Key words: Rhodotorula mucilaginosa, solid-state fermentation, carotenoids, fermentation substrates, fermentation conditions

Table 1

The optimized design of the substrates for the solid-state fermentation of Rhodotorula mucilaginosa (%)"

序号
Order
number
麸皮
Wheat
bran
豆粕
Soybean meal
玉米
Maize
米糠
Rice bran
玉米浆
Maize syrup
硫酸铵
Ammonium sulphate
磷酸二氢钾
Monopotassium phosphate
硫酸镁
Magnesium sulphate
1 73.4 9.51 5.00 6.64 2.43 2.50 0.33 0.17
2 77.7 6.00 3.00 8.10 4.16 0.74 0.08 0.19
3 79.8 7.93 3.00 2.00 6.59 0.46 0.05 0.18
4 59.5 19.3 4.44 10.2 4.45 1.89 0.05 0.08
5 71.4 7.89 15.0 2.00 2.04 1.30 0.18 0.22
6 67.7 10.0 4.60 14.0 2.00 1.27 0.23 0.24
7 63.4 14.4 13.6 3.70 2.44 1.57 0.50 0.28
8 52.3 19.8 13.6 10.6 2.00 1.57 0.15 0.03
9 77.0 7.53 9.97 2.98 2.05 0.40 0.05 0.03
10 58.1 15.5 9.15 12.2 4.03 0.40 0.50 0.06
11 58.1 18.2 12.9 5.01 3.10 2.50 0.11 0.15
12 53.8 16.6 7.79 11.3 8.59 1.16 0.50 0.28
13 62.1 13.3 8.73 8.05 6.00 1.53 0.28 0.09
14 69.4 6.37 3.00 11.9 6.39 2.44 0.25 0.30
15 56.0 18.3 5.81 7.81 10.0 1.74 0.13 0.26
16 76.1 8.99 3.00 4.93 4.38 2.48 0.06 0.03
17 59.5 19.3 4.44 10.2 4.45 1.89 0.05 0.08
18 62.3 16.4 10.1 7.38 2.94 0.61 0.05 0.22
19 57.7 15.6 6.41 10.9 8.82 0.40 0.19 0.03
20 56.4 17.7 14.0 3.66 7.32 0.85 0.10 0.04
21 70.2 20.0 3.06 3.21 2.63 0.68 0.21 0.05
22 62.1 13.3 8.73 8.05 6.00 1.53 0.28 0.09
23 77.7 6.00 3.00 8.10 4.16 0.74 0.08 0.19
24 65.9 7.38 13.8 7.01 4.86 0.40 0.42 0.27
25 57.6 12.2 13.8 4.76 8.84 2.35 0.20 0.30
26 63.6 6.00 14.0 4.73 9.90 1.54 0.12 0.10
27 73.4 9.51 5.00 6.64 2.43 2.50 0.33 0.17
28 77.7 6.00 3.00 8.10 4.16 0.74 0.08 0.19
29 79.8 7.93 3.00 2.00 6.59 0.46 0.05 0.18
30 79.8 7.93 3.00 2.00 6.59 0.46 0.05 0.18
31 59.5 19.3 4.44 10.2 4.45 1.89 0.05 0.08
32 67.7 10.0 4.60 14.0 2.00 1.27 0.23 0.24
33 62.1 13.3 8.73 8.05 6.00 1.53 0.28 0.09
34 69.4 6.37 3.00 11.9 6.39 2.44 0.25 0.30
35 76.1 8.99 3.00 4.93 4.38 2.48 0.06 0.03
36 62.3 16.4 10.1 7.38 2.94 0.61 0.05 0.22

Table 2

The optimized gradients of the conditions for the solid-state fermentation of Rhodotorula mucilaginosa"

梯度
Gradients
接种量
Inoculum (%)
发酵时间
Fermentation time (h)
发酵温度
Fermentation temperature (℃)
pH 含水量
Moisture content (%)
A 5.0 60.0 26.0 4.0 60.0
B 7.5 72.0 28.0 5.0 65.0
C 10.0 84.0 30.0 6.0 70.0
D 12.5 96.0 32.0 7.0 75.0

Table 3

The optimized design of the conditions for the solid-state fermentation of Rhodotorula mucilaginosa"

序号
Order number
接种量
Inoculum amount (%)
发酵时间
Fermentation time (h)
发酵温度
Fermentation temperature (℃)
pH 含水量
Moisture content (%)
1 A A A A A
2 A B B B B
3 A C C C C
4 A D D D D
5 B A B C D
6 B B A D C
7 B C D A B
8 B D C B A
9 C A C D B
10 C B D C A
11 C C A B D
12 C D B A C
13 D A D B C
14 D B C A D
15 D C B D A
16 D D A C B

Table 4

Effects of the optimization of the subtrates for the solid-state fermentation of Rhodotorula mucilaginosa on the carotenoid production and the number of bacteria"

序号
Order number
类胡萝卜素
Carotenoid (μg·kg-1)
发酵料含菌数
Number of bacteria (109 CFU/g)
1 1 673±28.8 2.22±0.40
2 1 329±81.6 2.42±0.38
3 1 715±125 3.08±0.41
4 1 767±47.2 3.28±0.41
5 1 293±76.6 2.85±0.30
6 1 503±94.2 2.82±0.35
7 1 332±24.2 2.85±0.33
8 1 699±70.4 2.94±0.50
9 1 404±73.9 2.70±0.23
10 1 751±159 2.59±0.29
11 1 673±77.7 2.42±0.23
12 1 767±56.8 2.82±0.27
13 1 757±135 2.61±0.39
14 1 785±64.1 2.42±0.22
15 1 902±22.1 3.43±0.45
16 1 470±38.7 2.45±0.33
17 1 831±79.4 3.52±0.23
18 1 923±109 3.13±0.39
19 1 695±100 2.87±0.26
20 1 383±69.6 2.61±0.33
21 1 296±133 3.27±0.36
22 1 329±78.8 2.80±0.28
23 1 758±49.3 2.77±0.43
24 1 776±182 2.85±0.19
25 1 630±51.9 2.67±0.31
26 1 744±79.3 2.91±0.35
27 1 695±32.3 2.14±0.26
28 1 372±53.0 2.32±0.26
29 1 656±63.1 3.01±0.27
30 1 685±73.9 3.07±0.41
31 1 785±88.5 3.22±0.30
32 1 479±72.4 2.79±0.23
33 1 732±103 2.59±0.23
34 1 787±61.3 2.56±0.27
35 1 502±30.9 2.51±0.23
36 1 848±98.7 2.87±0.25

Table 5

The Adeq Precision and Pred R-Squared of the model"

项目
Items
类胡萝卜素
Carotenoids
胶红酵母菌数
Number of Rhodototula mucilaginosa
模型的信噪比
Adeq Precision
6.23 5.32
R2 预测值
Pred R-Squared
-0.095 -0.031

Table 6

The correlation between the fermentation substrates of Rhodototula mucilaginosa and the carotenoid yield or number of bacteria"

因素
Factor
类胡萝卜素
Carotenoids
P
P-value
胶红酵母数
Number of Rhodototula mucilaginosa
P
P-value
麦麸 Wheat bran -0.336 0.045 -0.370 0.067
豆粕 Soybean meal 0.200 0.242 0.510 0.001
玉米粉 Maize -0.049 0.777 0.005 0.978
米糠 Rice bran 0.329 0.050 -0.027 0.874
玉米浆 Maize syrup 0.344 0.040 0.183 0.284
硫酸铵 Ammonium sulphate 0.094 0.586 -0.296 0.080
磷酸二氢钾 Monopotassium phosphate -0.009 0.960 -0.276 0.104
硫酸镁 Magnesium sulphate 0.196 0.253 -0.069 0.687

Table 7

The optimized formulation of the substrates for the solid-state fermentation of Rhodotorula mucilaginosa (%)"

麦麸
Wheat bran
豆粕
Soybean meal
玉米粉
Maize
米糠
Rice bran
玉米浆
Maize syrup
硫酸铵
Ammonium sulphate
磷酸二氢钾
Monopotassium phosphate
硫酸镁
Magnesium sulphate
52.5 20.0 3.00 14.0 10.0 0.40 0.05 0.04

Table 8

The model predictive values and measured data of the carotenoid production of Rhodotorula mucilaginosa"

指标
Index
模型预测值
Model predictive value
实测值
Measured data
SEM P
P-value
类胡萝卜素 Carotenoids (μg·kg-1) 1 923 1 937 22.6 0.65
活菌数 Number of bacteria (109 CFU/g) 3.2 3.18 0.38 0.31

Table 9

The orthogonal test results of the optimized conditions for the solid-state fermentation of Rhodotorula mucilaginosa"

序号
Order number
A B C D E 发酵料含菌数
Number of bacteria in fermented materials (109 CFU/g)
类胡萝卜素含量
Carotenoid content
(μg·kg-1)
1 1 1 1 1 1 4.03±0.29 1 377±30.5
2 1 2 2 2 2 3.60±0.31 3 149±50.8
3 1 3 3 3 3 2.78±0.40 2 150±93.5
4 1 4 4 4 4 3.53±0.41 2 126±75.6
5 2 1 2 3 4 2.57±0.25 3 150±77.8
6 2 2 1 4 3 3.29±0.23 1 914±65.5
7 2 3 4 1 2 3.64±0.43 1 902±46.2
8 2 4 3 2 1 2.82±0.35 2 378±87.9
9 3 1 3 4 2 2.96±0.26 1 651±55.4
10 3 2 4 3 1 3.49±0.28 3 068±32.5
11 3 3 1 2 4 3.02±0.34 2 012±69.8
12 3 4 2 1 3 3.41±0.39 2 447±103.5
13 4 1 4 2 3 3.27±0.38 2 350±45.6
14 4 2 3 1 4 2.73±0.37 1 752±29.6
15 4 3 2 4 1 3.31±0.26 2 686±56.4
16 4 4 1 3 2 3.29±0.21 2 192±33.8
k1 3.49 3.21 3.41 3.45 3.41 C4E1D1A1B2
RC>RE>RD>RA>RB
k2 3.08 3.28 3.22 3.18 3.37
k3 3.22 3.19 2.82 3.03 3.19
k4 3.15 3.26 3.48 3.27 2.96
R 0.41 0.09 0.66 0.42 0.45
k1 2201 2132 1874 1870 2377
k2 2336 2471 2858 2472 2224 C2D3B2E1A2
RC>RD>RB>RE>RA
k3 2294 2187 1983 2640 2215
k4 2245 2286 2362 2094 2260
R 135 338 984 770 161

Table 10

e optimized scheme of the conditions for the solid-state fermentation of Rhodotorula mucilaginosa"

项目Items 因素水平(由主到次)Factors level (from the main to the second)
细胞数 Cell number C4(32℃) E1(60%) D1(4.0) A1(5.0%) B2(60 h)
类胡萝卜素Carotenoids C2(28℃) D3(6.0) B2(72 h) E1(60%) A2(7.5%)

Table 11

The variance analysis of the effects of fermentation conditions on the number of Rhodototula mucilaginosa"

变异来源
Sources of variation
偏差平方和
Sum of squares of deviations
自由度
Freedom
方差
Variance
F值
F value
Fa
Fa
显著水平
Significant level
接种量Inoculum amount 0.38 3 0.13 16.9 F0.01(3,6)=9.78 ***
发酵时间Fermentation time 0.02 3 0.01 F0.05(3,6)=4.76
发酵温度Fermentation temperature 1.05 3 0.35 47.0 F0.1(3,6)=3.29 ***
pH 0.37 3 0.12 16.7 F0.25(3,6)=1.78 ***
含水量Moisture content 0.51 3 0.17 22.8 ***
误差Error 0.02 3 0.01
修正误差Corrected error 0.05 6 0.01
总和Sum 2.35

Table 12

The variance analysis of the effects of fermentation conditions on the carotenoid content"

变异来源
Sources of variation
偏差平方
Sum of squares of deviations
自由度
Freedom
方差
Variance
F值
F value
Fa
Fa
显著水平Significant level
接种量 Inoculum amount 41472 3 13 824 F0.01(3,9)=6.99
发酵时间 Fermentation time 265432 3 88 477 5.32 F0.05(3,9)=3.86 **
发酵温度 Fermentation temperature 2374448 3 791 483 47.5 F0.1(3,9)=2.81 ***
pH 1476072 3 492 024 29.6 F0.25(3,9)=1.63 ***
含水量Moisture content 66880 3 22 293
误差Error 41472 3 13 824
修正误差Corrected error 149824 9 16 647
总和Sum 4265776

Table 13

The carotenoid production and Rhodotorula mucilaginosa number under the optimal fermentation process"

指标 Index 试验值 Test values
类胡萝卜素 Carotenoids (μg·kg-1) 4 535±32.5
发酵料含菌数 Number of bacteria of fermentation (109 CFU/g) 3.79±0.29

Table 14

The changes of conventional nutrient composition in substrate for Rhodotorula mucilaginosa after fermentation (%)"

项目 Items 发酵底物Fermentation substrate 发酵产物Fermentation product SEM P P-value
粗纤维 Crude fiber 10.4b 11.6a 0.10 <0.05
粗蛋白质 Crude protein 25.9 b 28.4a 0.13 <0.05
水分 Moisture 12.6a 11.0b 0.24 <0.05
粗脂肪 Crude fat 3.25a 2.73b 0.13 <0.05
粗灰分 Ash 6.87 b 7.83a 0.04 <0.05
磷 Phosphorus 0.51 0.51 0.01 0.116
钙 Calcium 0.55 0.56 0.03 0.712

Table 15

The changes of amino acid content in substrate in substrate for Rhodotorula mucilaginosa after fermentation (g /100 g)"

项目 Items 发酵前 Before fermentation 发酵后 After fermentation SEM P P-value
天门冬氨酸 Aspartic acid 1.65 1.70 0.03 0.29
苏氨酸 Threonine 0.72b 0.86a 0.02 <0.05
丝氨酸 Serine 0.90 0.92 0.01 0.40
谷氨酸Glutamate 3.47b 3.80a 0.04 <0.05
甘氨酸 Glycine 0.99 0.99 0.01 0.99
丙氨酸 Alanine 1.16 1.20 0.01 0.65
半胱氨酸 Cysteine 0.24 0.20 0.09 0.23
缬氨酸 Valine 0.94 0.98 0.04 0.56
蛋氨酸 Methionine 0.19 0.20 0.01 0.10
异亮氨酸 Isoleucine 0.76 0.82 0.05 0.12
亮氨酸 Leucine 1.52 1.60 0.06 0.38
酪氨酸 Tyrosine 0.43 0.50 0.04 0.21
苯丙氨酸 Phenylalanine 0.94 1.08 0.04 0.07
赖氨酸 Lysine 1.03 1.11 0.05 0.29
组氨酸 Histidine 0.60a 0.24b 0.06 <0.05
精氨酸 Arginine 1.30 1.21 0.06 0.33
脯氨酸 Proline 2.22b 2.98a 0.04 <0.05
总量 Total 19.5 20.9 0.51 0.16
[1] BANZATTO D, FREITA L A D,MUTTON M J R. Carotenoid production by Rhodotorula rubra cultivated in sugarcane juice, molasses, and syrup. Ciência e Tecnologia de Alimentos, 2013, 33(33): 14-18.
[2] TANG F Y.The silver bullet for cancer prevention: Chemopreventive effects of carotenoids.Biomedicine, 2012, 2(3): 117-121.
doi: 10.1016/j.biomed.2012.06.004
[3] BHAGAVATHY S, SUMATHI P.Evaluation of antigenotoxic effects of carotenoids from green algae Chlorococcum humicola using human lymphocytes. Asian Pacific Journal of Tropical Biomedicine, 2012, 2(2):109-117.
doi: 10.1016/S2221-1691(11)60203-7 pmid: 3609264
[4] NELIS H J, DELEENHEER A P.Microbial sources of carotenoid- pigments used in foods and feeds. Journal of Applied Bacteriology, 1991, 70(3): 181-191.
[5] PERRIER V, DUBREUCQ E, GALZY P.Fatty-acid and carotenoid composition of rhodotorula strains. Archives of Microbiology, 1995, 164(3): 173-179.
[6] 董娟, 郑晓吉, 孙静涛, 史学伟. 红酵母产类胡萝卜素影响因素及检测方法研究进展. 粮食与油脂, 2013, 26(3): 49-51.
DONG J, ZHENG X J, SUN J T, SHI X W.Research advance in influencing factors of carotenoid producted by red yeasts and detection methods.Cereals & Oils, 2013, 26(3): 49-51. (in Chinese)
[7] FERRAO M, GARG S.Studies on effect of media components on growth and α-carotene production by Rhodotorula graminis RC04. Journal of Cell Tissue Reseach, 2011, 11(1): 2551-2556.
[8] HERNANDEZ-ALMANZA A, CESAR MONTANEZ J, AGUILAR- GONZALEZ M A, MARTINEZ-AVILA C, RODRIGUEZ- HERRERA R, N.AGUILAR C.Rhodotorula glutinis as source of pigments and metabolites for food industry. Food Bioscience, 2014, 5:64-72.
doi: 10.1016/j.fbio.2013.11.007
[9] KOT A M, BLAZEJAK S, KURCZ A, GIENTKA I, KIELISZEK M.Rhodotorula glutinis-potential source of lipids, carotenoids, and enzymes for use in industries. Applied Microbiology and Biotechnology, 2016, 100(14): 6103-6117.
doi: 10.1007/s00253-016-7611-8 pmid: 4916194
[10] ROADJANAKAMOLSON M, SUNTORNSUK W.Production of beta-carotene-enriched rice bran using solid-state fermentation of Rhodotorula glutinis. Journal of Microbiology and Biotechnology, 2010, 20(3): 525-531.
[11] HERNANDEZ-ALMANZA A, MONTANEZ-SAENZ J, MARTINEZ- AVILA C, RODRIGUEZ-HERRERA R, N.AGUILAR C. Carotenoid production byRhodotorula glutinis YB-252 in solid-state fermentation. Food Bioscience, 2014(7): 31-36.
doi: 10.1016/j.fbio.2014.04.001
[12] 杨文, 吉春明. 一种简单的胞壁破碎方法. 微生物学通报, 1995, 22(1): 58-59.
YANG W, JI C M.A simple method of crushing cell wall.Microbiology, 1995, 22(1): 58-59. (in Chinese)
[13] 王岁楼, 张鑫, 张平之. 红酵母类胡萝卜素提取方法研究.食品与机械, 2000(6): 14-16.
WANG S L, ZHANG X, ZHANG P Z.The extraction of carotenoids fromRhodotorula. Food & Machinery, 2000(6): 14-16. (in Chinese)
[14] 张玉诚, 薛白, 达勒措, 李秋瑾, 何宇. 混菌固态发酵白酒糟开发为蛋白质饲料的条件优化及营养价值评定. 动物营养学报, 2016, 28(11): 3711-3720.
doi: 10.3969/j.issn.1006-267x.2016.11.042
ZHANG Y C, XUE B, DA L C, LI Q J, HE Y.Distillers Grains: Optimization of mixed bacterial solid-state fermentation conditions to produce protein feed and nutrient value analysis.Chinese Journal of Animal Nutrition, 2016, 28(11): 3711-3720. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2016.11.042
[15] GABERT V M, SAUER W C, SCHMITZ M, AHRENS F, MOSENTHIN R.The effect of formic acid and buffering capacity on the ileal digestibilities of amino acids and bacterial populations and metabolites in the small intestine of weanling pigs fed semipurified fish meal diets.Canadian Journal of Animal Science, 1995, 75(4): 615-623.
doi: 10.4141/cjas95-091
[16] 王岁楼, 章银良, 王平诸. 红酵母RY-98产类胡萝卜素培养基的优选及其发酵生理学研究. 生物技术, 2000, 10(4): 24-27.
WANG S L, ZHANG Y L, WANG P Z.Studies on the selection of carotenoids fermentation medium for RY- 98 strain of Rhodotorula and its fermentative physiology. Biotechnology, 2000, 10(4): 24-27. (in Chinese)
[17] 唐棠. 红酵母Y-5菌株产类胡萝卜素发酵条件的研究[D]. 雅安: 四川农业大学, 2011.
TANG T.Optimization of fermentation condition for production of carotenoid by Rhotlotorula Y-5 [D]. Ya’an: Sichuan Agricultural University, 2011. (in Chinese)
[18] 张坤生, 连喜军, 李红, 任云霞. 红酵母高产β-胡萝卜素营养因子的选择. 食品工业科技, 2004, 25(7): 60-62.
doi: 10.3969/j.issn.1002-0306.2004.07.024
ZHANG K S, LIAN X J, LI H, REN Y X.Nutrition factors selection for β-carotene of red yeast.Science and Technology of Food Industry, 2004, 25(7): 60-62. (in Chinese)
doi: 10.3969/j.issn.1002-0306.2004.07.024
[19] 梁晓华, 杨莺莺, 杨铿, 陈永青. 海洋红酵母Y2发酵产类胡萝卜素条件的研究. 中国微生态学杂志, 2011, 23(12): 1068-1073.
LIANG X H, YANG Y Y, YANG K, CHENG Y Q.Production of carotenoid by marine red yeast Y2.Chinese Journal of Microecology, 2011, 23(12): 1068-1073. (in Chinese)
[20] 刘卉琳. 红酵母合成类胡萝卜素及体外转化维生素A的研究[D]. 长沙: 湖南农业大学, 2012.
LIU H L.Studies on production of carotenoid by Rhodotorulla mucilaginosa and its conversion to vitamin A in vitro [D]. Changsha: Hunan Agricultural University, 2012. (in Chinese)
[21] 丛莉. 海洋红酵母产类胡萝卜素的研究[D]. 青岛: 中国海洋大学, 2006.
CONG L.Investigation on carotenoids from Marine Rhodotorula sp. [D]. Qingdao: Ocean University of China, 2006. (in Chinese)
[22] TINOI J, RAKARIYATHAM N, DEMING R L.Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed mung bean waste flour as substrate. Process Biochemistry, 2005, 40(7): 2551-2557.
[23] 王增煌, 王文策, 翟双双, 谢强, 左鑫, 杨琳. 香蕉茎叶粉固态发酵条件优化及鹅对其养分利用率的研究. 动物营养学报, 2017, 29(4): 1283-1293.
WANG Z H, WANG W C, ZHAI S S, XIE Q, ZUO X, YANG L.Study on optimal solid state fermentation conditions of banana stems and leaves powder and its nutrient utilization for geese.Chinese Journal of Animal Nutrition, 2017, 29(4): 1283-1293. (in Chinese)
[24] 赵紫华, 韩雪, 王丽丽, 郭晶晶, 张率, 韩萌, 荀静娜. 高产β-胡萝卜素的红酵母培养条件的优化. 食品与发酵科技, 2014, 50(4): 34-38.
doi: 10.3969/j.issn.1674-506X.2014.04-009
ZHAO Z H, HAN X, WANG L L, GUO J J, ZHANG L, HAN M, XUN J N.The fermentation technology optimization with high β-carotene by red yeast.Food and Fermentation Technology, 2014, 50(4): 34-38. (in Chinese)
doi: 10.3969/j.issn.1674-506X.2014.04-009
[25] KAISER P, SURMANN P, VALLENTIN G, FUHRMANN H.A small-scale method for quantitation of carotenoids in bacteria and yeasts.Journal of Microbiological Methods, 2007, 70(1): 142-149.
doi: 10.1016/j.mimet.2007.04.004 pmid: 17509707
[26] DOMYOUNG K, EUNJI C, JIWON K, YONGWOOG L, HWAJEE C.Production of cellulases by Penicillium sp in a solid-state fermentation of oil palm empty fruit bunch. African Journal of Biotechnology, 2014, 13(1): 145-155.
doi: 10.5897/AJB12.2970
[27] MAURYA D P, SINGH D, PRATAP D, MAURYA J P.Optimization of solid state fermentation conditions for the production of cellulase by Trichoderma reesei. Journal of Environmental Biology, 2012, 33(1): 5-8.
doi: 10.1038/emboj.2010.40
[28] AKSU Z, EREN A T.Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Process Biochemistry, 2005, 40(9): 2985-2991.
[29] 张闯. 红酵母发酵生产类胡萝卜素的研究[D]. 大连: 大连工业大学, 2011.
ZHANG C.Preparation of carotenoids by fermention of Rhodotorula [D]. Dalian: Dalian Polytechnic University, 2011. (in Chinese)
[30] ZHANG X Y, YANG Z H, LIANG J, TANG L, CHEN F.Detoxification of Jatropha curcas seed cake in solid-state fermentation of newly isolated endophytic strain and nutrition assessment for its potential utilizations.International Biodeterioration & Biodegradation, 2016, 109: 202-210.
doi: 10.1016/j.ibiod.2016.02.001
[31] 王建军. 混菌固态发酵黄酒糟生产蛋白饲料的研究[D]. 杭州: 浙江大学, 2007.
WANG J J.Production and application of protein feed from yellow rice wine lees using mixed strains combinations [D]. Hangzhou: Zhejiang University, 2007. (in Chinese)
[32] 孙展英. 马铃薯渣固态发酵工艺研究及生物学价值评定[D]. 保定: 河北农业大学, 2014.
SUN Z Y.Study on technology of solid-State fermentation and evaluation of biological value of potato residue [D]. Baoding: Hebei Agricultural University, 2014. (in Chinese)
[1] SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing [J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997.
[2] DIAO WeiNan,YUAN PingLi,GONG ChengSheng,ZHAO ShengJie,ZHU HongJu,LU XuQiang,HE Nan,YANG DongDong,LIU WenGe. Genetic Analysis and Gene Mapping of Canary Yellow in Watermelon Flesh [J]. Scientia Agricultura Sinica, 2021, 54(18): 3945-3958.
[3] WANG Hao,YIN Lian,LIU JieXia,JIA LiLi,DING Xu,SHEN Di,FENG Kai,XU ZhiSheng,XIONG AiSheng. The Carotenoid Cleavage Dioxygenases Gene AgCCD4 Regulates the Pigmentation of Celery Tissues with Different Colors [J]. Scientia Agricultura Sinica, 2021, 54(15): 3279-3294.
[4] ZHANG Lu-lu, WU Sheng-yong, WANG Shuai-yu, LI Juan, LEI Zhong-ren. Optimization of Fermentation Process of Beauveria bassiana of SDDZ-9 Against Frankliniella occidentalis [J]. Scientia Agricultura Sinica, 2015, 48(15): 2985-2994.
[5] ZHENG Wen-Yin, WANG Fan, SI Hong-Qi, ZHANG Wen-Ming, YAO Da-Nian. Variations of LOX and PPO Activities and Carotenoid Content as Well as Their Influence on Whole Flour Color in Common Wheat [J]. Scientia Agricultura Sinica, 2013, 46(6): 1087-1094.
[6] HOU Meng, ZHANG Yun-Gang, WANG Xin, TANG Wei, LIU Ya-Ju, TANG Zhong-Hou, JIN Rong, YAN Hui, MA Dai-Fu, LI Qiang. Variation Laws of Carotenoids Content in Storage Root of Orange-Fleshed Sweetpotato and Its Relationships with Major Economic Traits [J]. Scientia Agricultura Sinica, 2013, 46(19): 3988-3996.
[7] SONG Zhao-peng,WU Sheng-jiang,GAO Yuan,XU Zi-cheng,ZHANG Wei-jian,GONG Chang-rong
. The Degradation Mechanism of Carotenoids in Flue-Cured Tobacco and the Changes of the Related Aroma Components in the Yellowing Stage During the Bulk Curing Process
[J]. Scientia Agricultura Sinica, 2010, 43(20): 4246-4254 .
[8] SONG Zhao-peng,GAO Yuan,WU Sheng-jiang,XU Zi-cheng,GONG Chang-rong,ZHANG Wei-jian
. The Degradation Mechanism of Carotenoids in Flue-Cured Tobacco and the Changes of the Related Enzymes Activities at Leaf-Drying Stage During the Bulk Curing Process
[J]. Scientia Agricultura Sinica, 2009, 42(8): 2875-2881 .
[9] WANG Yong-hong,RAN Wei,ZHANG Fu-guo,YANG Xing-ming,XU Yang-chun,SHEN Qi-rong
. Study on Conditions in Solid-State Fermentation of Rapeseed Meal by Mixed Strains for Amino Acid Fertilizer
[J]. Scientia Agricultura Sinica, 2009, 42(10): 3530-3540 .
[10] ,,,. Law of Changes of Carotenoids Contents in Fructus Lycii of Chinese Wolfberry (Lycium barbarum L.) at Different Mature Periods [J]. Scientia Agricultura Sinica, 2006, 39(03): 599-605 .
[11] ,. Preliminary Identification of Red Carotenoids from Potamogeton crispus L. [J]. Scientia Agricultura Sinica, 2004, 37(09): 1363-1368 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!