Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (5): 951-958.doi: 10.3864/j.issn.0578-1752.2017.05.018

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

The Variation of Pathogens, Parasites and Symbionts in Migratory Honeybees (Apis mellifera ligustica)

LIU Shan1, WANG LiuHao1, GUO Jun1,2, LI JiLian1, XU LongLong1   

  1. 1Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093; 2College of Life Science, Kunming University of Science and Technology, Kunming 650500
  • Received:2016-10-19 Online:2017-03-01 Published:2017-03-01

Abstract: 【Objective】The objectives of this study are to examine the occurrence and prevalence of viruses and parasites in migratory honeybees, Apis mellifera ligustica, and to analyze the variation of two main symbiotic bacteria Gilliamella apicola and Snodgrassella alvi.【Method】The virus and parasite infections were detected by RT-PCR in the same colony of A. m. ligustica at different migratory locations. The infection rate of virus and parasite in different regions and seasons were analyzed by chi-square test. The honey bee β-actin gene was selected as the reference gene, the quantitative real-time PCR (qPCR) was used to explore the quantity variation of symbiotic bacteria G. apicola and S. alvi in the different regions, and the Kendall Rank correlation coefficient was used to analyze the correlation between the rate of pathogen infection and the quantity of symbiotic bacteria.【Result】In the seven regions, three viruses were found: Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV), and deformed wing virus (DWV). The infection rates of IAPV and BQCV were higher in all regions, and the difference was significant among different regions. DWV infection rate was relatively low, and the infection rate among different regions was extremely significant. Nosema apis was not detected in all the samples. N. ceranae was detected in four regions and the infection rate was extremely significant among different regions. N. bombi was detected in all regions and the infection rate among different regions was significant. The results showed that the infection rates of IAPV was not significantly different in different seasons, but the DWV, BQCV, N. bombi and N. ceranae infection rates had significant differences in different seasons, and the infection rate in spring and summer was significantly higher than that in autumn and winter. The qPCR result showed that G. apicola and S. alvi were detected in all migratory beekeeping periods, and the difference of the two symbiotic bacteria in different regions was extremely significant. There was a significant negative correlation between the prevalence of S. alvi and IAPV. 【Conclusion】The results showed that IAPV, BQCV, DWV and microsporidia are prevalent in the migratory colonies. The infection rate of bee pathogens and the quantity of symbiotic bacteria are significantly different among different geographical areas; there are negative correlations between the incidence of some pathogens and the quantity of some symbiotic bacteria; migratory beekeeping has negative impacts on worker longevity and colony health.

Key words: migratory beekeeping, Apis melliferaligustica, pathogens, symbiotic bacteria, quantitative PCR

[1]    李易谷. 转地蜂场蜂群损失分析. 蜜蜂杂志, 2013(11): 33.
Li Y G. Analysis on the loss of bee colony. Journal of Bee, 2013(11): 33. (in Chinese)
[2]    刁青云, 吴杰, 姜秋玲, 谢文闻. 中国蜂业现状及存在问题. 世界农业, 2008(10): 59-61.
Diao Q Y, Wu J, Jiang Q L, Xie W W. Current situation of Chinese apiculture. World Agriculture, 2008(10): 59-61. (in Chinese)
[3]    Welch A, Drummond F, Tewari S, Averill A, Burand J P. Presence and prevalence of viruses in local and migratory honeybees (Apis mellifera) in Massachusetts. Applied and environmental microbiology, 2009, 75(24): 7862-7865.
[4]    Moritz R F, Pirk C W, Hepburn H R, Neumann P. Short-sighted evolution of virulence in parasitic honeybee workers (Apis mellifera capensis Esch.). Naturwissenschaften, 2008, 95(6): 507-513.
[5]    Dillon R J, Vennard C T, Buckling A, Charnley A K. Diversity of locust gut bacteria protects against pathogen invasion. Ecology Letters, 2005, 8(12): 1291-1298.
[6]    Fraune S, Bosch T C. Why bacteria matter in animal development and evolution. Bioessays, 2010, 32(7): 571-580.
[7]    Engel P, Martinson V G, Moran N A. Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(27): 11002-11007.
[8]    Dainat B, Ken T, Berthoud H, Neumann P. The ectoparasitic mite Tropilaelaps mercedesae (Acari, Laelapidae) as a vector of honeybee viruses. Insectes sociaux, 2009, 56(1): 40-43.
[9]    Eyer M, Chen Y P, Schäfer M O, Pettis J, Neumann P. Small hive beetle, Aethina tumida, as a potential biological vector of honeybee viruses. Apidologie, 2009, 40(4): 419-428.
[10]   Boecking O, Genersch E. Varroosis–the ongoing crisis in bee keeping. Journal für Verbraucherschutz und Lebensmittelsicherheit, 2008, 3(2): 221-228.
[11]   Sammataro D, Gerson U, Needham G. Parasitic mites of honey bees: life history, implications, and impact. Annual review of entomology, 2000, 45(1): 519-548.
[12]   De Miranda J R, Genersch E. Deformed wing virus. Journal of invertebrate pathology, 2010, 103: S48-S61.
[13]   Hails R S, Ball B V, Genersch E. Infection strategies of insect viruses//Virology and the Honey Bee. European Commission, 2008: 255-276.
[14]   Genersch E, Von Der Ohe W, Kaatz H, Schroeder A, Otten C, Büchler R, Berg S, Ritter W, Mühlen W, Gisder S, Meixner M, Liebig G, Rosenkranz P. The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie, 2010, 41(3): 332-352.
[15]   Kwong W K, Moran N A. Gut microbial communities of social bees. Nature Reviews Microbiology, 2016, 14(6): 374-384.
[16]   Hamdi C, Balloi A, Essanaa J, Crotti E, Gonella E, Raddadi N, Ricci I, Boudabous A, Borin S, Manino A, Bandi C, Alma A, Daffonchio D, Cherif A. Gut microbiome dysbiosis and honeybee health. Journal of Applied Entomology, 2011, 135(7): 524-533.
[17]   Martinson V G, Moy J, Moran N A. Establishment of characteristic gut bacteria during development of the honeybee worker. Applied and environmental microbiology, 2012, 78(8): 2830-2840.
[18]   Li J, Qin H, Wu J, Sadd B M, Wang X, Evans J D, Peng W, Chen Y. The prevalence of parasites and pathogens in Asian honeybees Apis cerana in China. Plos one, 2012, 7(11): e47955.
[19]   Ai H, Yan X, Han R. Occurrence and prevalence of seven bee viruses in Apis mellifera and Apis cerana apiaries in China. Journal of invertebrate pathology, 2012, 109(1): 160-164.
[20]   Yang B, Peng G, Li T, Kadowaki T. Molecular and phylogenetic characterization of honey bee viruses, Nosema microsporidia, protozoan parasites, and parasitic mites in China. Ecology and evolution, 2013, 3(2): 298-311.
[21]   贾慧茹, 刘进祖, 王星, 吴艳艳, 周婷. 北京地区六种蜜蜂病毒病的流行病学研究. 应用昆虫学报, 2014, 51(3): 772-780.
Jia H R, Liu J Z, Wang X, Wu Y Y, Zhou T. Occurrence and prevalence of six bee viruses in Beijing. Chinese Journal of Applied Entomology, 2014, 51(3): 772-780. (in Chinese)
[22]   Benjeddou M, Leat N, Allsopp M, Davison S. Detection of acute bee paralysis virus and black queen cell virus from honeybees by reverse transcriptase PCR. Applied and Environmental Microbiology, 2001, 67(5): 2384-2387.
[23]   Ribière M, Triboulot C, Mathieu L, Aurières C, Faucon J P, Pépin M. Molecular diagnosis of chronic bee paralysis virus infection.Apidologie, 2002, 33(3): 339-351.
[24]   Chen Y, Smith I B, Collins A M, Pettis J S, Feldlaufer M F. Detection of deformed wing virus infection in honey bees, Apis mellifera L., in the United States. American Bee Journal, 2004, 144(7): 557-559.
[25]   Di Prisco G, Pennacchio F, Caprio E, Boncristiani Jr H F, Evans J D, Chen Y. Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis melliferaJournal of General Virology, 2011, 92(1): 151-155.
[26]   Stoltz D, Shen X R, Boggis C, Sisson G. Molecular diagnosis of Kashmir bee virus infection. Journal of Apicultural Research, 1995, 34(3): 153-160.
[27]   Chen Y, Pettis J S, Feldlaufer M F. Detection of multiple viruses in queens of the honey bee Apis mellifera L.. Journal of invertebrate pathology, 2005, 90(2): 118-121.
[28]   Chen Y, Evans J D, Smith I B, Pettis J S. Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United StatesJournal of invertebrate pathology, 2008, 97(2): 186-188.
[29]   Chaimanee V, Chen Y, Pettis J S, Cornman R S, Chantawannakul P. Phylogenetic analysis of Nosema ceranae isolated from European and Asian honeybees in Northern Thailand. Journal of invertebrate pathology, 2011, 107(3): 229-233.
[30]   Tay W T, O’MAHONY E M, Paxton R J. Complete rRNA gene sequences reveal that the microsporidium Nosema bombi infects diverse bumblebee (Bombus spp.) hosts and contains multiple polymorphic sites. Journal of Eukaryotic Microbiology, 2005, 52(6): 505-513.
[31]   Chen Y P, Higgins J A, Feldlaufer M F. Quantitative real-time reverse transcription-PCR analysis of deformed wing virus infection in the honeybee (Apis mellifera L.). Applied and Environmental Microbiology, 2005, 71(1): 436-441.
[32]   徐龙龙, 吴杰, 郭军, 李继莲. 共生菌群在熊蜂生长发育过程中的动态变化. 中国农业科学, 2014, 47(10): 2030-2037.
Xu L L, Wu J, Guo J, Li J L. Dynamic variation of symbionts in bumblebees during hosts growth and development. Scientia Agricultura Sinica, 2014, 47(10): 2030-2037. (in Chinese)
[33]   Cox-Foster D L, Conlan S, Holmes E C, Palacios G, Evans J D, Moran N A, Quan P L, Briese T, Hornig M, Geiser D M, Martinson V, vanEngelsdorp D, Kalkstein A L, Drysdale A, Hui J, Zhai J H, Cui L W, Hutchison S K, Simons J F, Egholm M, Pettis J S, Lipkin W I. A metagenomic survey of microbes in honey bee colony collapse disorder. Science, 2007, 318(5848): 283-287.
[34]   李志国. 蜜蜂以色列急性麻痹病毒的分子检测、流行传播及其对蜜蜂行为的影响[D]. 杭州: 浙江大学, 2014.
Li Z G. Molecular detection, prevalence and transmission of Israeli acute paralysis virus and its effects on honey bee behaviors[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)
[35]   Ribière M, Ball B, Aubert M. Natural history and geographical distribution of honey bee viruses//Virology and the honey bee. European Commission, 2008: 15-84.
[36]   Allen M, Ball B. The incidence and world distribution of honey bee viruses. Bee world, 1996, 77(3): 141-162.
[37]   Shen M, Yang X, Cox-Foster D, Cui L. The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology, 2005, 342(1): 141-149.
[38]   Botías C, Martín-Hernández R, Garrido-Bailón E, González-Porto A, Martínez-Salvador A, De La Rúa P, Meana A, Higes M. The growing prevalence of Nosema ceranae in honey bees in Spain, an emerging problem for the last decade. Research in veterinary science, 2012, 93(1): 150-155.
[39]   Maiolino P, Iafigliola L, Rinaldi L, De Leva G, Restucci B, Martano M. Histopathological findings of the midgut in European honey bee (Apis mellifera L.) naturally infected by Nosema spp. Veterinary Medicine and Animal Sciences, 2014, 2(1): Article 4.
[40]   McIvor C A, Malone L A. Nosema bombi, a microsporidian pathogen of the bumble bee Bombus terrestris (L.). New Zealand Journal of Zoology, 1995, 22(1): 25-31.
[41]   郭军. 蜜蜂肠道菌群多样性及其影响因素研究[D]. 北京: 中国农业科学院 2015.
Guo J. Diversity and influencing factors of gut microbiota in honey bees[D]. Beijing: Chinese academy of agricultural sciences, 2015. (in Chinese)
[42]   Koch H, Cisarovsky G, Schmid-Hempel P. Ecological effects on gut bacterial communities in wild bumblebee colonies. Journal of Animal Ecology, 2012, 81(6): 1202-1210.
[43]   吴杰. 蜜蜂学. 北京: 中国农业出版社, 2012.
Wu J. Apiology. Beijing: China Agriculture Press, 2012. (in Chinese)
[1] LI XiaoJing,ZHANG SiYu,LIU Di,YUAN XiaoWei,LI XingSheng,SHI YanXia,XIE XueWen,LI Lei,FAN TengFei,LI BaoJu,CHAI ALi. Establishment and Application of Rapid Quantitative Detection of Viable Plasmodiophora brassicae by PMAxx-qPCR Method [J]. Scientia Agricultura Sinica, 2022, 55(10): 1938-1948.
[2] CHEN Yuan,CAI He,LI Li,WANG LinJie,ZHONG Tao,ZHANG HongPing. Alternative Splicing of TNNT3 and Its Effect on the Differentiation of MuSCs in Goat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4466-4477.
[3] ZHAO XuSheng,QI YongZhi,ZHEN WenChao. Composition and Distribution Characteristics of Pathogens Causing Wheat Sharp Eyespot in Wheat and Maize Double Cropping System [J]. Scientia Agricultura Sinica, 2020, 53(16): 3269-3279.
[4] WANG Duo,XIE XueWen,CHAI ALi,SHI YanXia,LI BaoJu. Identification of the Pathogen Causing Cabbage Died in Gansu Province and Detection of Anastomosis Groups [J]. Scientia Agricultura Sinica, 2019, 52(16): 2787-2799.
[5] LIU XiaoChen, WU ShengYong, LEI ZhongRen, WANG HaiHong. Growth Kinetics and Virulence of Two Beauveria bassiana Strains in Frankliniella occidentalis Under Different Temperatures [J]. Scientia Agricultura Sinica, 2018, 51(8): 1484-1492.
[6] XiaoXia CUI, HongMei SHU, Lu JIANG, XiaoLan HE, YuanYong GONG, WanChao NI, ShuQiao GUO. Identification of Pathogens Causing Brown Spot and the Role of MeJA in Disease Resistance in Stevia rebaudiana [J]. Scientia Agricultura Sinica, 2018, 51(18): 3520-3530.
[7] TianBo DING, XiaoBei LIU, Jie LI, KeKe WEI, Dong CHU. Development of a Real-Time Fluorescent Quantitative PCR Method for the Detection of Tomato chlorosis virus and Its Application [J]. Scientia Agricultura Sinica, 2018, 51(10): 2013-2022.
[8] WANG Jun-juan, MU Min, WANG Shuai, LU Xu-ke, CHEN Xiu-gui, WANG De-long, FAN Wei-li, YIN Zu-jun, GUO Li-xue, YE Wu-wei, YU Shu-xun. Molecular Clone and Expression of GhDHN1 Gene in Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2016, 49(15): 2867-2878.
[9] WANG Ying-chao, GAN Qin-hua, LI Yan, JI Ying, WU Xing-hai, SHAO Xiu-ling. Detection of Embellisia allii Using Real-Time Quantitative PCR Based on Glyceraldehyde-3-Phosphate Dehydrogenase Gene [J]. Scientia Agricultura Sinica, 2015, 48(2): 390-397.
[10] JIN Xin, ZHANG Man, FAN Yan-ru, WANG Pei, YANG Yin-feng. Effects of Saccharomyces cerevisiae on the Expression of SBD-1 in Cultured Ruminal Epithelial Cells of Sheep [J]. Scientia Agricultura Sinica, 2015, 48(19): 3910-3918.
[11] WANG Yan, LI Da-qi, LIU Xiao-jian, LI Tao, MA En-bo, FAN Ren-jun, ZHANG Jian-zhen. Molecular Characterization and RNAi-Based Functional Analysis of Obstructor Family Genes in Locusta migratoria [J]. Scientia Agricultura Sinica, 2015, 48(1): 73-82.
[12] ZHANG Wen-Hui, HOU Hai-Xia, YANG Qiong, WANG Shu-Hui, MAO Xu-Lian, LIU Yong-Jie. Effects of Tebufenozide on mRNA Expression of Dopa Decarboxylase Gene in Larvae of Spodoptera litura Fabricius [J]. Scientia Agricultura Sinica, 2014, 47(8): 1512-1521.
[13] ZHANG Jian-Qin, GE Ping-Ting, LI Da-Qi, WANG Yan, ZHANG Jian-Zhen, MA EnBo. Spatio-Temporal Expression and Insecticide Tolerance Analysis of Carboxylesterase Gene LmCesF1 from Locusta migratoria [J]. Scientia Agricultura Sinica, 2014, 47(8): 1522-1530.
[14] WANG Xin, LI Yi, CHEN Quan-Mei, YI Qi-Ying, XIE Kang, WU Yong, ZHAO Ping. Bioinformational Analysis and Expression Pattern of V-ATPase in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2014, 47(8): 1611-1621.
[15] LI Da-Qi-1, WANG Yan-1, ZHANG Jian-Qin-1, LI Tao-1, SUN Yi-2, ZHANG Jian-Zhen-1. Molecular Characterization and Function of Chitinase 10 Gene (OcCht10) from Oxya chinensis [J]. Scientia Agricultura Sinica, 2014, 47(7): 1313-1320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!