Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (14): 2845-2855.doi: 10.3864/j.issn.0578-1752.2013.14.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Research Progresses in Ac/Ds Transposon Activation Tagging System

 WANG  Wen-Jing, MA  Hao-Ran, LI  Jia-Na, ZHANG  Hong-Bo   

  1. College of Agronomy and Biotechnology, Southwest University/ Chongqing Rapeseed Engineering Research Center/ Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400716
  • Received:2013-02-04 Online:2013-07-15 Published:2013-05-23

Abstract: Along with the development of plant functional genomics, creation of an informative mutant population is becoming more and more important. The Ac/Ds transposon system is an effective tool for mutant creation, especially for plant species with difficulties in transformation. And, the development of Ac/Ds transposon activation tagging system makes it feasible to create dominant mutations. In this paper, the progresses in the development of Ac/Ds transposon activation tagging system with versatile activation tagging were introduced and the future perspectives of this system in creation of plant mutant populations were discussed.

Key words: Ac/Ds transposon activation tagging system , mutation population , functional genomics

[1]McClintock B. Cytogenetic studies of maize and neurospora. Carnegie Institution of Washington Year Book, 1947, 46: 146-152.

[2]McClintock B. Mutable loci in maize. Carnegie Institution of Washington Year Book, 1951, 50: 174-181.

[3]Fedoroff N, Wessler S, Shure M. Isolation of the transposable maize controlling elements Ac and Ds. Cell, 1983, 35(1): 235-242.

[4]Aarts M G M, Koncz C, Pereira A. Transposon and T-DNA mutagenesis// Wilson Z A. Arabidopsis A Practical Approach. New York: Oxford University Press, 1999: 143-169.

[5]瞿绍洪, 景健康, 胡含. 异源植物中转座因子标签研究的进展. 遗传, 1997, 19(1): 41-45.

Qu S H, Jing J K, Hu H. Progress of transposon tagging in heterologous plants. Hereditas, 1997, 19(1): 41-45. (in Chinese)

[6]Qu S, Desai A, Wing R, Sundaresan V. A versatile transposon-based activation tag vector system for functional genomics in cereals and other monocot plants. Plant Physiology, 2008, 146(1): 189-199.

[7]Baker B, Schell J, Lörz H, Fedoroff N. Transposition of the maize controlling element “Activator” in tobacco. Proceedings of the National Academy of Sciences of the USA, 1986, 83(13): 4844-4848.

[8]Greco R, Ouwerkerk P B F, deKam R J, Sallaud C, Favalli C, Colombo L. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. Theoretical and Applied Genetics, 2003, 108(1): 10-24.

[9]Kolesnik T, Szeverenyi I, Bachmann D, Kumar C S, Jiang S, Ramamoorthy R, Cai M, Ma Z G, Sundaresan V, Ramachandran S. Establishing an efficient Ac/Ds tagging system in rice: Large-scale analysis of Ds flanking sequences. The Plant Journal, 2004, 37(2): 301-314.

[10]van Enckevort L J, Droc G, Piffanelli P, Greco R, Gagneur C, Weber  C, González V M, Cabot P, Fornara F, Berri S, Miro B, Lan P, Rafel M, Capell T, Puigdomènech P, Ouwerkerk P B, Meijer A H, Pe' E, Colombo L, Christou P, Guiderdoni E, Pereira A. EU-OSTID: A collection of transposon insertional mutants for functional genomics in rice. Plant Molecular Biology, 2005, 59(1): 99-110.

[11]Park S H, Jun N S, Kim C M, Oh T Y, Huang J, Xuan Y H. Analysis of gene-trap Ds rice populations in Korea. Plant Molecular Biology, 2007, 65(4): 373-384.

[12]Parinov S, Sevugan M, Ye D, Yang W C, Kumaran M, Sundaresan V. Analysis of flanking sequences from dissociation insertion lines: A database for reverse genetics in Arabidopsis. The Plant Cell, 1999, 11(12): 2263-2270.

[13]Ito T, Motohashi R, Kuromori T, Mizukado S, Sakurai T, Kanahara H. A new resource of locally transposed Dissociation elements for screening gene-knockout lines in silico on the Arabidopsis genome. Plant Physiology, 2002, 129(4): 1695-1699.

[14]Raina S, Mahalingam R, Chen F, Fedoroff N. A collection of sequenced and mapped Ds transposon insertion sites in Arabidopsis thaliana. Plant Molecular Biology, 2002, 50(1): 93-110.

[15]Muskett P R, Clissold L, Marocco A, Springer P S, Martienssen R, Dean C. A resource of mapped dissociation launch pads for targeted insertional mutagenesis in the Arabidopsis genome. Plant Physiology, 2003, 132(2): 506- 516.

[16]Kuromori T, Hirayama T, Kiyosue Y, Takabe H, Mizukado S, Sakurai T, Akiyama K, Kamiya A, Ito T, Shinozaki K. A collection of 11800 single-copy Ds transposon insertion lines in Arabidopsis. The Plant Journal, 2004, 37(6): 897-905.

[17]Ito T, Motohashi R, Kuromori T, Noutoshi Y, Seki M, Kamiya A. A resource of 5814 dissociation transposon-tagged and sequence- indexed lines of Arabidopsis transposed from start loci on chromosome 5. Plant Cell Physiology, 2005, 6(7): 1149-1153.

[18]Hayashi H, Czaja I, Lubenow H, Schell J, Walden R. Activation of a plant gene by T-DNA tagging: Auxinindependent growth in vitro. Science, 1992, 258(5086): 1350-1353.

[19]Weigel D, Ahn J H, Blázquez M A, Borevitz J O, Christensen S K, Fankhauser C, Ferrándiz C, Kardailsky I, Malancharuvil E J, Neff M M, Nguyen J T, Sato S, Wang Z Y, Xia Y, Dixon R A, Harrison M J, Lamb C J, Yanofsky M F, Chory J. Activation tagging in Arabidopsis. Plant Physiology, 2000, 122(4): 1003-1013.

[20]Kardailsky I, Shukla V K, Ahn J H, Dagenais N, Christensen S K, Nguyen J T, Chory J, Harrison M J, Weigel D. Activation tagging of the floral inducer FT. Science, 1999, 286(5446): 1962-1965.

[21]Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, Dixon R A, Lamb C. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. The European Molecular Biology Journal, 2004, 23(4):980-988.

[22]Borevitz J O, Xia Y, Blount J, Dixon R A, Lamb C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. The Plant Cell, 2000, 12(12): 2383-2394.

[23]Grant J J, Chini A, Basu D, Loake G J. Targeted activation tagging of the Arabidopsis NBS-LRR gene, ADR1, conveys resistance to virulent pathogens. Molecular Plant-Microbe Interactions, 2003, 16(8): 669-680.

[24]Jeong D H, An S, Kang H G, Moon S, Han J J, Park S, Lee H S, An K. T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiology, 2002, 130(4): 1636-1644.

[25]Fladung M, Ahuja M R. Excision of the maize transposable element Ac in periclinal chimeric leaves of 35S-Ac-rolC transgenic aspen-Populus. Plant Molecular Biology, 1997, 33(6): 1097-1103.

[26]Mathews H, Clendennen S K, Caldwell C G, Liu X L, Connors K, Matheis N, Schuster D K, Menasco D J, Wagoner W, Lightner J, Wagner D R. Activation tagging in tomato idenfies a transcriptional regulator of anthocyanin biosynthesis, modification and transport. The Plant Cell, 2003, 15(8): 1689-1703.

[27]Zubko E, Adams C J, Macháèková I, Malbeck J, Scollan C, Meyer P. Activation tagging identifies a gene from Petunia hybrid responsible for the production of active cytokinins in plants. The Plant Journal, 2002, 29(6): 797-808.

[28]Wilson K, Long D, Swinburne J, Coupland G. A Díssocíatíon insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. The Plant Cell, 1996, 8(4): 659-671.

[29]Ayliffe M A, Pallotta M, Langridge P, Pryor A J. A barley activation tagging system. Plant Molecular Biology, 2007, 64(3): 329-347.

[30]Koprek T, McElroy D, Louwerse J, Williams-Carrier R, Lemaux P G. An efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function, The Plant Journal, 2000, 24(2): 253-263.

[31]Suzuki Y, Uemura S, Saito Y, Murofushi N, Schmitz G, Theres K, Yamaguchi I. A novel transposon tagging element for obtaining gain-of-function mutants based on a self-stabilizing Ac derivative. Plant Molecular Biology, 2001, 45(2): 123-131.

[32]Fladung M, Polak O. Ac/Ds-transposon activation tagging in poplar: A powerful tool for gene discovery. BMC Genomics, 2012, 13: 61.

[33]Kim Y, Schumaker K S, Zhu J K. EMS mutagenesis of Arabidopsis. Methods in Molecular Biology, 2006, 323: 101-103.

[34]杨松涛, 张涛, 郑家奎. 水稻突变体库研究进展. 中国农学通报, 2010, 26(19): 27-30.

Yang S T, Zhang T, Zheng J K. Advance in rice mutant library. Chinese Agricultural Science Bulletin, 2010, 26(19): 27-30. (in Chinese)

[35]张健, 徐金相, 孔英珍, 纪振动, 王兴春, 安丰英, 李超, 孙加强, 张素芝, 杨晓辉, 牟金叶, 刘新仿, 李家洋, 薛勇彪, 左建儒. 化学诱导激活型拟南芥突变体库的构建及分析. 遗传学报, 2005, 32(10): 1082-1088.

Zhang J, Xu J X, Kong Y Z, Ji Z D, Wang X C, An F Y, Li C, Sun J Q, Zhang S Z, Yang X H, Mu J Y, Liu X F, Li J Y, Xue Y B, Zuo J R. Generation of chemical-induced activation tagging T-DNA insertion lines of Arabidopsis thaliana. Acta Genetica Sinica, 2005, 32(10) : 1082-1088. (in Chinese)

[36]Kirik V, Simon M, Huelskamp M, Schiefelbein J. The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Development Biology, 2004, 286(2): 506-513.

[37]Zhao Y, Christensen S K, Fankhauser C, Cashman J R, Cohen J D, Weigel D, Chory J. A role for flavin monooxygenase-like exzymes in auxin biosynthesis. Science, 2001, 291(5502): 306-309.

[38]Van der Graaff E, Hooykaas P J J, Keller B. Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number. The Plant Journal, 2002, 32(5): 819-830.

[39]Chalfun-Junior A, Franken J, Mes J J, Marsch-Martinez N, Pereira A, Angenent G C. ASYMETRIC LEAVES2-LIKE1 gene, a member of the AS2/LOB family, controls proximal-distal patterning in Arabidopsis petals. Plant Molecular Biology, 2005, 57(4): 559-575.

[40]Li J, Wen J, Lease K A, Doke J T, Tax F E, Walker J C. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell, 2002, 110(2): 213-222.

[41]Mora-Garcia S, Vert G, Yin Y, Cano-Delgado A, Cheong H, Chory J. Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteriods in Arabidopsis. Genes and Development, 2004, 18(4): 448-460.

[42]Wen J, Lease K A, Walker J C. DVL, a novel class of small polypepetides: Overexpression alters Arabidopsis development. The Plant Journal, 2004, 37(5): 668-677.

[43]Zhou A, Wang H, Walker J C, Li J. BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteriod signaling. The Plant Journal, 2004, 40(3): 399-409.

[44]Jiang S Y, Ramachandran S. Natural and artificial mutants as valuable resources for functional genomics and molecular breeding. International Journal of Biological Science, 2010, 6(3): 228-251.

[45]Droc G, Périn C, Fromentin S, Larmande P. OryGenesDB 2008 update: Database interoperability for functional genomics of rice. Nucleic Acids Research, 2009, 37 (Database issue): D992-995.

[46]Krishnan A, Guiderdoni E, An G, Hsing Y I, Han C D, Lee M C, Yu S M, Upadhyaya N, Ramachandran S, Zhang Q, Sundaresan V, Hirochika H, Leung H, Pereira A. Mutant resources in rice for functional genomics of the grasses. Plant Physiology, 2009, 149 (1): 165-170.

[47]Kuromori T, Takahashi S, Kondou Y, Shinozaki K, Matsui M. Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant Cell Physiology, 2009, 50(7): 1215-1231.

[48]Kumar C S, Wing R A, Sundaresan V. Efficient insertional mutagenesis in rice using the maize En/Spm elements. The Plant Journal, 2005, 44(5): 879-892.

[49]Upadhyaya N M , Zhou X R, Zhu Q H, Ramm K, Wu L, Eamens A, Sivakumar R, Kato T, Yun D W, Santhoshkumar C, Kottaram K, Narayanan, Peacock J W, Dennis E S. An iAc/Ds gene and enhancer trapping system for insertional mutagenesis in rice. Funcionalt Plant Biology, 2002, 29(5): 547-559.

[50]Kim C M, Piao H L, Park S J, Chon N S, Je B I, Sun B, Park S H, Park J Y, Lee E J, Kim M J, Chung W S, Lee K H, Lee Y S, Lee J J, Won Y J, Yi G, Nam M H, Cha Y S, Yun D W, Eun M Y, Han C D. Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice. The Plant Journal, 2004, 39(2): 252-263.

[51]Enoki H, Izawa T, Kawahara M, Komatsu M, Koh S, Kyozuka J, Shimamoto K. Ac as a tool for the functional genomics of rice. The Plant Journal, 1999, 19(5): 605-613.

[52]Shimamoto K, Miyazaki C, Hashimoto H, Izawa T, Itoh K, Terada R, Inagaki Y, Iida S. Trans-activation and stable integration of the maize transposable element Ds cotransfected with the Ac transposase gene in transgenic rice plants. Molecular and General Genetics, 1993, 239(3): 354-360.

[53]Chin H G, Choe M S, Lee S H, Park S H, Koo J C, Kim N Y, Lee J J, Oh B G, Yi G H, Kim S C, Choi H C, Cho M J, Han C D. Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. The Plant Journal, 1999, 19(5): 615-623.

[54]Greco R, Ouwerkerk P B, Taal A J, Favalli C, Beguiristain T, Puigdomènech P, Colombo L, Hoge J H, Pereira A. Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis. Plant Molecular Biology, 2001, 46(2): 215-227.

[55]Jung K H, An G, Ronald P C. Towards a better bowl of rice: Assigning function to tens of thousands of rice genes. Nature Reviews Genetics, 2008, 9(2): 91-101.

[56]Carter J D, Pereira A, Dickerman A W, Veilleux R E. An active ac/ds transposon system for activation tagging in tomato cultivar m82 using clonal propagation. Plant Physiology, 2013, 162(1): 145-156.

[57]王曼莹. 分子生物学. 北京: 科学出版社, 2006: 352-353.

Wang M Y. Molecular Biology. Beijing: Science Press, 2006: 352-353. (in Chinese)

[58]朱正歌, 肖晗, 付亚萍, 胡国成, 于永红, 斯华敏, 张景六, 孙宗 修. 水稻转座子突变体库的构建及突变类型的遗传分析. 生物工程学报, 2001, 17(3): 288-292.

Zhu Z G, Xiao H, Fu Y P, Hu G C, Yu Y H, Si H M, Zhang J L, Sun Z X. Construction of transgenic rice populations by inserting the maize transponson Ac/Ds and genetic analysis for several mutants. Chinese Journal of Biotechnology, 2001, 17(3): 288-292. (in Chinese)

[59]Zhu Z G, Fu Y P, Xiao H, Hu G C, Si H M, Yu Y H, Sun Z X. Ac/Ds transposition activity in transgenic rice population and DNA flanking sequence of Ds insertion sites. Acta Botanica Sinica, 2003, 45(1): 102-107.

[60]栾维江, 孙宗修. Ac/Ds标签系统与水稻功能基因组学. 植物生理与分子生物学学报, 2005, 3l(5): 441-450.

Luan W J, Sun Z X. Ac/Ds tagging system and functional genomics in rice. Journal of Plant Physiology and Molecular Biology, 2005, 31(5): 441-450. (in Chinese)

[61]刘芳, 张向前, 张泽民,陈兆贵,朱海涛,王江,张景六,张桂权. 水稻Ac/Ds系统的Ds转座行为. 科学通报, 2007, 52(14): 649-1655.

Liu F, Zhang X Q, Zhang Z M, Chen Z G, Zhu H T, Wang J, Zhang J L, Zhang G Q. DS transposition activity in Ac/Ds transgenic rice. Chinese Science Bulletin, 2007, 52(14): 1649-1655. (in Chinese)

[62]Chen S Y, Wu Y R, Wu P. A Two-component Ac/Ds activation tagging system in rice genome for mutant development. Journal of Agricultural Biotechnology, 2004, 12(4): 369-373.

[63]王桂英, 齐高燕, 徐晓辉, 李南弈, 郭泽建. 转座子Ac/Ds的水稻转化及杂交后代中Ds的跳跃分析. 中国水稻科学, 2005, 19(1): 1-6.

Wang G Y, Qi G Y, Xu X H, Li N Y, Guo Z J. Transformation of Ac/Ds into rice and Ds transposition analysis of hybrids. Chinese Journal of Rice Science, 2005, 19(1): 1-6. (in Chinese)

[64]徐娟, 闫晓红, 王力军, 黄进勇, 魏文辉. 修饰的Ac/Ds转座子元件在油菜中的遗传转化与鉴定. 武汉大学学报: 理学版, 2010, 56(3): 367-372.

Xu J, Yan X H, Wang L J, Huang J Y, Wei W H. Transformation and identification of modified Ac and Ds transposon elements in Brassica napus. Journal of Wuhan University: Natural Science Edition, 2010, 56(3): 367-372. (in Chinese)

[65]Bouché N, Bouchez D. Arabidopsis gene knockout: Phenotypes wanted. Current Opinion in Plant Biology, 2001, 4(2): 111-117.

[66]Gu Z, Steinmetz L M, Gu X, Scharfe C, Davis R W, Li W H. Role of duplicate genes in genetic robustness against null mutations. Nature, 2003, 421(6918): 63-66.

[67]The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408(6814): 796-815.

[68]Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange B M, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W L, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller R M, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 296(5565): 92-100.

[69]Brenchley R, Spannagl M, Pfeifer M, Barker G L, D'Amore R, Allen A M, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie W R, Hall A, Mayer K F, Edwards K J, Bevan M W, Hall N. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 2012, 491(7426): 705-710.

[70]Ling H Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo M C, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496(7443): 87-90.

[71]Aarts M G, orzaan P, tiekema W J, Pereira A. A two-element enhancer-inhibitor transposon system in Arabidopsis thaliana. Molecular Genetics and Genomics, 1995, 247(5): 555-564.

[72]Speulman E, Metz P L, van Arkel G, te Lintel Hekkert B, Stiekema W J, Pereira A. A two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome. The Plant Cell, 1999, 11(10): 1853-1866.

[73]Marsch-Martinez N, Greco R, Van Arkel G, Herrera-Estrella L, Pereira A. Activation tagging using the En-I maize transposon system in Arabidopsis. Plant Physiology, 2002, 129(4): 1544-1556.

[74]Schneider A, Kirch T, Gigolashvili T, Mock H P, Sonnewald U, Simon R, Flügge U I, Werr W. A transposon-based activation-tagging population in Arabidopsis thaliana (TAMARA) and its application in the identification of dominant developmental and metabolic mutations. FEBS Letter, 2005, 579(21): 4622-4628.

[75]Guiderdoni E, Gantet P. Ac-Ds solutions for rice insertion mutagenesis. Methods Molecular Biology, 2012, 859: 177-187.
[1] ZHANG Chuan-xi . Current Research Status and Prospects of Genomes of Insects Important to Agriculture in China [J]. Scientia Agricultura Sinica, 2015, 48(17): 3454-3462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!