Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (13): 2633-2642.doi: 10.3864/j.issn.0578-1752.2013.13.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Embryo Types and Characteristics of Apomixis in Poa pratensis L.

 TIAN  Chen-Xia, MA  Hui-Ling, ZHANG  Yong-Mei   

  1. 1P.ratacultural College, Gansu Agricultural University/Sino-U. S. Centers for Grazingland Ecosystem Sustainability/Key  Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou 730070
    2.Instrumental Research & Analysis Center, Gansu Agricultural University, Lanzhou 730070
  • Received:2013-01-25 Online:2013-07-01 Published:2013-05-06

Abstract: 【Objective】The embryonic development process in different periods was observed to understand the embryonic types and features of apomixis, which can provide a theoretical basis for further understanding the mechanism of apomixis and selecting local new varieties of Poa pratensis L..【Method】 The improved paraffin section technique was used to identify the types and characteristics of embryo in P. pratensis L., in which the material was fixed in FAA and cleared in multisegment dimethybrnzene separately, and the slice thickness was 8 µm. Ehrlich’s hematoxylin (30 min)-eosin (5 min) double stain was involved in the process.【Result】 Five embryonic types were observed during reproductive development process in P. pratensis L., and in which there were sexual reproduction embryo (21.44%) , somatic apospory embryo (49.67%), parthenogenesis embryo (10.72%), synergids embryo (4.82%) and antipodal cell embryo (7.66%), respectively. The somatic apospory embryo was dominant embryo presence of them. Sexual embryo sac was typical Polyonum type embryo sac. There were sexual embryo sac, apospory embryo sac or diplospory embryo sac coexisting in one ovule to form polyembryony in P. pratensis L., and the occurrence frequency of polyembryony was 5.69%. The polarity of the sexual embryo sac was the same with synergids embryo sac,and it was opposite to antipodal cell embryo sac then. Somatic apospory embryo sac varied irregularly during its development, with the presence of single or more than two sacs to develop polyembryony. It was shown that the presented two embryo sacs were the majority. 【Conclusion】 There are various reproduction patterns in P. pratensis L., with sexual reproduction and apomixes. It is a facultative apomixis plant, in which, the somatic apospory is dominant mode of reproduction in apomixes, in addition, a small amount of parthenogenesis and apogamety are present among them.

Key words: Poa pratensis L. , apomixis , somatic apospory , parthenogenesis , apogamy

[1]Hartley W. Studies on the origin, evolution and distribution of the Gramineae: IV. The genus Poa L.. Australian Journal of Botany, 1958, 12: 116-128.

[2]Robert J, Soreng. Chloroplast-DNA phylogenetics and biogeography in a reticulating group: Study in Poa (Poaceae). American Journal of Botany, 1990, 77(11): 1383-1400.

[3]Anton A M, Connor H E. Floral biology and reproduction in Poa (Poeae: Gramineae). Australian Journal of Botany, 1995, 43(6): 577-599.

[4]Jefferson R A. Apomixis: A social revolution for agriculture! Biotechnology and Development Monitor, 1994, 19: 14-16.

[5]姚家琳, 蔡得田, 马平福, 王灶安, 祝虹. 无融合生殖水稻HDAR002的胚胎学研究. 华中农业大学学报, 1994, 13(4): 339-343.

Yao J L, Cai D T, Ma P F, Wang Z A, Zhu H. Embryological syudies on apomixis rice HDAR002. Journal of Huazhong Agricultural University, 1994, 13(4): 339-343. (in Chinese)

[6]姚家琳, 蔡得田, 马平福, 祝虹. 水稻无孢子生殖的胚胎学研究. 中国水稻科学, 1997, 11(2): 113-117.

Yao J L, Cai D T, Ma P F, Zhu H. Embryological studies on apospory in rice HDAR. Chinese Journal of Rice Science, 1997, 11(2): 113-117. (in Chinese)

[7]孙敬三, 白素兰, 黄群策. 同源四倍体水稻的生殖特性研究. 中国农业科学, 1999, 32(2): 112.

Sun J S, Bai S L, Huang Q C. Study on reproductive characters of autotetraploid rice. Scientia Agricultura Sinica, 1999, 32(2): 112. (in Chinese)

[8]郭德栋, 康传红, 刘丽萍, 李勇, 方晓华. 异源三倍体甜菜(VVC)无融合生殖的研究. 中国农业科学, 1999, 32(4): 1-5.  

Guo D D, Kang C H, Liu L P, Li Y, Fang X H. Study of apomixis in the allotriploid beet (VVC). Scientia Agricultura Sinica, 1999, 32(4): 1-5. (in Chinese)

[9]尚娅佳, 申家恒, 郭德栋, 李伟, 丁常宏, 陆俊萍. 甜菜无融合生殖单体附加系M14雌配子体发育的超微结构观察. 中国农业科学, 2010, 43(1): 29-38.

Shang Y J, Shen J H, Guo D D, Li W, Ding C H, Lu J P. The ultrastructural changes of female gametophyte during its development in the apomictic monosomic addition line M14 of beta corolliflora in sugar beet. Scientia Agricultura Sinica, 2010, 43(1): 29-38. (in Chinese)

[10]Walter V B, William H P E. Apomixis in the Gramineae: Panicoideae. American Journal of Botany, 1958, 45: 253-263.

[11]Garcia R, Asíns M J, Forner J, Carbonell E A. Genetic analysis of apomixis in Citrus and Poncirus by molecular markers. Theoretical and Applied Genetics, 1999, 99(3/4): 511-518.

[12]张友德, 李和平, 杨小菊, 秦天才, 张君芝. 龙须草无融合生殖现象的观察. 华中农业大学学报, 1996, 15(2): 200-204.

Zhang Y D, Li H P, Yang X J, Qin T C, Zhang J Z. A preliminary study on the apomixis of Eulaliopsis binata. Journal of Huazhong Agricultural University, 1996, 15(2): 200-204. (in Chinese)

[13]Grazi F, Umaerus M, Akerberg E. Oberservations on the mode of reproduction and the embryology of Poa pratensis. Hereditas, 1961, 47: 489-541.

[14]Savidan Y. Transfer of apomixis through wide crosses. Mexico// Flowering of Apomixis: From Mechanisms to Genetic Engineering. Mexico: CIMMYT, IRD, European Commission DG VI, 2001, 153-167.

[15]王风翱. 作物胚胎学基础. 长沙: 湖南科技出版社, 1987.

Wang F A. Crops Foundations of Embryology. Changsha: Hunan Science and Technology Press, 1987. (in Chinese)

[16]Marshall D R, Brown A H D. The evolution of apomixis. Heredity, 1981, 47(1): 1-15.

[17]Vandijk G W, Winkelhorst G D. Interspecific crosses as a tool in breeding Poa pratensis L.. Euphytical, 1982, 31: 215-223.

[18]Aguilera P M, Sartor M E, Galdeano F, Espinoza F, Quarin C L. Interspecific tetraploid hybrids between two forage grass species: Sexual Paspalum plicatulum and apomictic P. guenoarum. Crop Science, 2011, 51(4): 1544-1550.

[19]Nitzsche W. Interspecific hybrids between apomictic froms of Poa paulstris L. × Poa pratensis L.. Proceedings of the XIV International Grassland Congress. Lexington, Kentucky, U.S.A. 1981, 6: 15-24.

[20]Tucker M R, Araujo A G, Paech N A, Hecht V. Sexual and apomictic reproduction in hieracium subgenus pilosella are closely interrelated developmental pathways. The Plant Cell, 2003, 15(7): 1524-1537.

[21]杨弘远. 植物胚胎学中的整体透明技术. 植物学通报, 1988, 5(2): 114-116.

Yang H Y. Mass dyeing and whole mounting technique of plant embryology. Chinese Bulletin of Botany, 1988, 5(2): 114-116. (in Chinese)

[22]李和平, 孙蒙祥, 蔡得田, 王灶安. 草地早熟禾无融合生殖现象的研究. 武汉植物学研究, 1991, 9(1): 11-14.

Li H P, Sun M X, Cai D T, Wang Z A. Research on apomixis in kentucky bluegrass. Journal of Wuhan Botanical Research, 1991, 9(1): 11-14. (in Chinese)

[23]赵桂琴, 曹致中. 草地早熟禾无融合生殖的细胞学鉴定. 草业学 报, 1997, 6(4): 64-70.

Zhao G Q, Cao Z Z. Cytological identification of apomixis in Poa pratensis. Acta Prataculturae Sinica, 1997, 6(4): 64-70. (in Chinese)

[24]苏群达. 草地早熟禾‘纳苏’幼穗分化发育与胚胎学研究[D]. 武汉: 华中农业大学, 2009.

Su Q D. Study on rudimentary paniele development and embryology in‘Nassau’kentucky bluegrass (Poa pratensis L.) [D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese)

[25]郝建华, 强胜. 无融合生殖—无性种子的形成过程. 中国农业科 学, 2009, 42(2): 377-387.

Hao J H, Qiang S. Apomixis-The process of asexual seed formation. Scientia Agricultura Sinica, 2009, 42(2): 377-387. (in Chinese)

[26]李和平, 孙蒙祥, 蔡得田, 王灶安. 草地早熟禾胚胎学研究: III.多胚囊及多胚现象. 武汉植物学研究, 1996, 14(1): 25-29.

Li H P, Sun M X, Cai D T, Wang Z A. Embrylogy study on kentucky bluegrass: III. Multiple embryo sacs and polyembryony. Journal of Wuhan Botanical Research, 1996, 14(1): 25-29. (in Chinese)

[27]雷和田, 赵云云, 王景林, 杨峻山. 雾灵山草地早熟禾多胚囊和多胚现象的研究. 植物学通报, 2000, 17(3): 270-273.

Lei H T, Zhao Y Y, Wang J L, Yang J S. Research on multiple emrbyo-sacs and polyembryony in Poa pratensis L. in Wu-Ling-Shan. Chinese Bulletin of Botany, 2000, 17(3): 270-273. (in Chinese)

[28]马国华, 赵南先, 黄学林. 四倍体双穗雀稗兼性无孢子生殖的研究. 热带亚热带植物学报, 2003, 11(3): 255-259.  

Ma G H, Zhao N X, Huang X L. Facultative apospory in tetraploid Paspalum distichum L.. Journal of Tropical and Subtropical Botany, 2003, 11(3): 255-259. (in Chinese)

[29]Miles J W. Apomixis for cultivar development in tropical forage grasses. Crop Science, 2007, 47: 238-249.

[30]Albertini E, Barcaccia G, Porceddu A, Silvia S, Mario F. Mode of reproduction is detected by ParthI and SexI SCAR markers in a wide range of facultative apomictic Kentucky bluegrass varieties. Molecular Breeding, 2001, 7: 293-300.

[31]肖辅珍, 王景林. 白羊草无融合生殖现象的研究初报. 植物学通 报, 1994, 11: 73.

Xiao P Z, Wang J L. Research on apomixis in Bothriochloaischaemum. Chinese Bulletin of Botany, 1994, 11: 73. (in Chinese)

[32]吴树彪, 尚勇进, 韩雪梅, 王景雪. 高粱SSA-1 无融合生殖胚胎学研究. 植物学报, 1994, 36(11): 833-837.  

Wu S B, Shang Y J, Han X M, Wang J X. Embryological study on apomixis in a Sorghum line SSA-1. Acta Botanica Sinica, 1994, 36(11): 833-837. (in Chinese)

[33]Tang G Y, Schertz K F, Bashaw E C. Apomixis in Sorghum lines and their F1 Progenies. Botanical Gazette, 1980, 141(3): 294-299.

[34]Warmke H E. Apomixis in Panicum maximum. American Journal of Botany, 1954, 41(1): 5-11.

[35]Yahara K, Horie R, Kobayashi I, Sasaki A. Evolution of DNA double-strand break repair by gene conversion: Coevolution between a phage and a restriction-modification system. Genetics, 2007, 176(1): 513-526.

[36]Carman J G, Jamison M, Elliott E, Dwivedi K K, Naumova T N. Apospory appears to accelerate onset of meiosis and sexual embryo sac formation in sorghum ovules. BMC Plant Biology, 2011, 11(9): 3-13.

[37]Roche D, Conner J A, Budiman M A, Frisch D, Wing R, Hanna W W, Ozias-Akins P. Construction of BAC libraries from two apomictic grasses to study the microcolinearity of their apospory-specific genomic regions. Theoretical and Applied Genetics, 2002, 104(5): 804-812.

[38]周开达, 汪旭东, 罗明, 高克铭, 周绍莉, 严志彬. 水稻无融合生殖研究进展. 西南农业学报, 1991, 4(3): 109-110.

Zhou K D, Wang X D, Luo M, Gao K M, Zhou S L, Yan Z B. Progress research of the apomixis in rice. Southwest China Journal of Agricultural Sciences, 1991, 4(3): 109-110. (in Chinese)

[39]Bicknell R A, Koltunow A M. Understanding apomixis: Recent advances and remaining conundrums. The Plant Cell, 2004, 16: 228-245. 

[40]Melva N P. Apomixis in Cortaderia jubata (Gramineae). New Zealand Journal of Botany, 1978, 16: 45-59.

[41]Friedman W E, Williams J H. Developmental evolution of the sexual process in ancient flowering plant lineages. The Plant Cell, 2004, 16: 119-132.

[42]Tobe H, Jaffré T, Raven P H. Embryology of Amborella (Amborellaceae): Descriptions and polarity of character states. Journal of Plant Research, 2000, 113(3): 271-280.

[43]胡适宜. 被子植物生殖生物学. 北京: 高等教育出版社, 2005: 232-243.

Hu S Y. Reproductive Biology of Angiosperms. Beijing: Higher Education Press, 2005: 232-243. (in Chinese)

[44]Hecht V, Vielle-Calzada J, Hartog M V, Schmidt E D L, Boutilier K, Grossniklaus U, Vries S C. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiology, 2001, 127(3): 803-816.
[1] ZHANG Hai-yan,ZHANG Ying,CONG Bin,QIAN Hai-tao,DONG Hui,FU Hai-bin
. Effects of Environmental Factors on Stability of Thelytoky of Trichogramma dendrolimi Infected with Wolbachia #br# [J]. Scientia Agricultura Sinica, 2009, 42(7): 2366-2372 .
[2]

. Apomixis——The Process of Asexual Seed Formation [J]. Scientia Agricultura Sinica, 2009, 42(2): 377-387 .
[3] ,,. Genetic Diversity and Classification of Ecotypes of Eulaliopsis binata via Morphological Traits and AFLP Markers [J]. Scientia Agricultura Sinica, 2004, 37(11): 1699-1704 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!