Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (14): 2939-2947.doi: 10.3864/j.issn.0578-1752.2012.14.017

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Review on the Intelligent Technology for Animal Husbandry Information Monitoring

 LU  Ming-Zhou, SHEN  Ming-Xia, DING  Yong-Qian, YANG  Xiao-Jing, ZHOU  Bo, WANG  Zhi-Guo   

  1. 1.南京农业大学工学院/江苏省智能化农业装备重点实验室,南京 210031
    2.南京农业大学动物医学院/农业部动物生理生化重点实验室,南京 210095
    3.南京农业大学动物科技学院,南京 210095
    4.江苏省永康农牧科技有限公司,常州 213241,江苏
  • Received:2012-02-21 Online:2012-07-15 Published:2012-03-28

Abstract: The information of animal husbandry mainly includes breeding environment information, animals' behavior and physiology signs. Collecting environment parameters of breeding in an accurate and efficient manner is not only the important foundation for the feedback control of breeding environment, but also the requirement of building up a good living environment for animals. Animal behavior is the external performance of animal physiological status. Animal behavior monitoring and analysis are beneficial for early detection of suspected sick animals, which in turn can reduce the economic loss. At present, the method of monitoring the information of animal husbandry in China mainly relies on the artificial observation, which has the shortage of strong subjectivity and low accuracy. With the development of modern information technology, animal husbandry information monitoring based on intelligent technology is developing and improving rapidly. The present study and application of some key technologies, including audio analysis, machine vision, wireless sensor network and RFID technology to monitoring the animal husbandry information is discussed. The research direction of the intelligent technology for animal husbandry information monitoring in the future is put forward.

Key words: information of animal husbandry, intelligent monitoring, animal behavior, healthy breeding, animal welfare

[1]陈长喜, 张宏福, 王兆毅, 王乙丁. 畜禽健康养殖预警体系研究与应用. 农业工程学报, 2010, 26(11): 215-220.

Chen C X, Zhang H F, Wang Z Y, Wang Y D. Study and application of early warning architecture of animal health culture. Transactions of the CSAE, 2010, 26(11): 215-220. (in Chinese)

[2]张庆东, 田立亚. 我国畜禽养殖小区发展存在的问题及其对策. 农业工程学报, 2006, 22(增刊2): 68-70.

Zhang Q D, Tian L Y. Problems and countermeasures in the development of animal raising billages. Transactions of the CSAE, 2006, 22(Suppl 2): 68-70. (in Chinese)

[3]Cornou C. Automated monitoring methods for group housed SOWS[D]. Copenhagen: University of Copenhagen, 2007.

[4]Mouraa D J, Silvab W T, Naas I A, Tolon Y A, Lima K A O, Vale M M. Real time computer stress monitoring of piglets using vocalization analysis. Computers and Electronics in Agriculture, 2008, 64(1): 11-18.

[5]常纪文. 动物福利与动物权利之法学辨析. 昆明理工大学学报: 社科(法学)版, 2007, 7(7): 6-8.

Chang J W. On legal relations between animal welfare and animal right. Journal of Kunming University of Science and Technology, 2007, 7(7): 6-8. (in Chinese)

[6]Clapham M W, Fedders M J, Beeman K, Neel J P S. Acoustic monitoring system to quantify ingestive behavior of free-grazing cattle. Computers and Electronics in Agriculture, 2011, 76(1): 96-104.

[7]Milone D H, Rufiner H L, Galli J R, Lacaf E A, Cangiano C A. Computational method for segmentation and classification of ingestive sounds in sheep. Computers and Electronics in Agriculture, 2009, 65(2): 228-237.

[8]Ferrari S, Silva M, Guarino M, Aerts J M, Berckmans D. Cough sound analysis to identify respiratory infection in pigs. Computers and Electronics in Agriculture, 2008, 64(2): 318-325.

[9]Silva M, Exadaktylos V, Ferrari S, Guarino M, Aerts J M, Berckmans D. The influence of respiratory disease on the energy envelope dynamics of pig cough sounds. Computers and Electronics in Agriculture, 2009, 69(1): 80-85.

[10]Silva M, Ferrari S, Costa A, Aerts J M, Guarino M, Berckmans D. Cough localization for the detection of respiratory diseases in pig houses. Computers and Electronics in Agriculture, 2008, 64(2): 286-292.

[11]Jahns G. Call recognition to identify cow conditions—a call-recognizer translating calls to text. Computers and Electronics in Agriculture, 2008, 62(1): 54-58.

[12]Ikeda Y, Ishii Y. Recognition of two psychological conditions of a single cow by her voice. Computers and Electronics in Agriculture, 2008, 62(1): 67-72.

[13]Lind M N, Vinther M, Hemmingsen P R, Hansen A K. Validation of a digital video tracking system for recording pig locomotor behaviour. Journal of Neuroscience Methods, 2005, 143(2): 123-132.

[14]Ahrendt P, Gregersen T, Henrik K. Development of a real-time computer vision system for tracking loose-housed pigs. Computers and Electronics in Agriculture, 2011, 76(2): 169-174.

[15]Cangar O, Leroy T, Guarino M, Vrankena E, Fallonc R, Lenehanc J, Meed J, Berckmans D. Automatic real-time monitoring of locomotion and posture behaviour of pregnant cows prior to calving using online image analysis. Computers and Electronics in Agriculture, 2008, 64(1): 53-60.

[16]Bin S, Xin H W. A real-time computer vision assessment and control of thermal comfort for group-housed pigs. Computers and Electronics in Agriculture, 2008, 62(1): 15-21.

[17]朱伟兴, 浦雪峰, 李新城, 陆晨芳. 基于行为监测的疑似病猪自动化识别系统, 农业工程学报, 2010, 26(1):188-192.

Zhu W X, Pu X F, Li X C, Lu C F. Automatic identification system of pigs with suspected case based on behavior monitoring. Transactions of the CSAE, 2010, 26(1):188-192. (in Chinese)

[18]Song X Y, Leroy T, Vranken E, Maertens W, Sonck B, Berckmans D. Automatic detection of lameness in dairy cattle—Vision-based trackway analysis in cow's locomotion. Computers and Electronics in Agriculture, 2008, 64(1): 39-44.

[19]Akyildiz I F. Wireless sensor network: a survey. Computer Networks, 2002, 38: 393-422.

[20]Ning W, Zhang N Q, Wang M H. Wireless sensors in agriculture and food industry—recent development and future perspective. Computers and Electronics in Agriculture, 2006, 50(1): 1-14.

[21]滕翠凤, 赵德安, 赵建波. 多传感器数据融合在猪舍环境中的应用. 传感器与微系统, 2009, 28(12):109-112.

Teng C F, Zhao D A, Zhao J B. Application of multi-sensor data fusion in piggery environment. Transducer and Microsystem Technologies. 2009, 28(12):109-112. (in Chinese)

[22]俞守华, 区晶莹, 张洁芳. 猪舍有害气体测定与温度智能控制算 法. 农业工程学报,2010, 26(7):290-294.

Yu S H, Ou J Y, Zhang J F. Harmful gases determination and temperature intelligent control algorithm in piggery. Transactions of the CSAE, 2010, 26(7):290-294. (in Chinese)

[23]赵建洋, 丁卫红. 基于3G流媒体的养殖厂远程监测控制系统研究. 计算机测量与控制,2009, 17(12):2400-2402.

Zhao J Y, Ding W H. Research on remote monitor the control system based on 3G streaming media. Computer Measurement & Control, 2009, 17(12):2400-2402. (in Chinese)

[24]柳平增, 毕树生, 苗 良, 苏 平, 薛新宇. 畜禽规模养殖环境智能调控系统的研制. 计算机测量与控制, 2009, 17(7): 1316-1319.

Liu P Z, Bi S S, Miao L, Su P, Xue X Y. Design of intelligent environment control system for massive livestock breeding. Computer Measurement & Control, 2009, 17(7): 1316-1319. (in Chinese)

[25]Hwang J, Hyun Y. Study of the ubiquitous hog farm system using wireless sensor networks for environmental monitoring and facilities control. Sensors, 2010(10): 10752-11077.

[26]Eigenberg R A, Brandl B T, Nineaber J A. Sensors for dynamic physiological measurements. Computers and Electronics in Agriculture, 2008, 62(1): 41-47.

[27]Martinez A, Schoenig S, Andresen D, Warren S. Ingestible pill for heart rate and core temperature measurement in cattle//28th Annual Conference of the IEEE EMBS. New York, NY, 2006: 3190-3193.

[28]Warren S, Martinez A, Sobering T, Andresen D. Electrocardiographic pill for cattle heart rate determination//30th Annual International IEEE EMBS Conference. Columbia, Canada, 2008: 4852-4855.

[29]Hoskins S, Sobering T, Andresen D, Warren S. Near-Field wireless magnetic link for an ingestible cattle health monitoring pill. Annual international Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis, MN, 2009: 5401-5404.

[30]Darr M, Epperson W. Embedded sensor technology for real time determination of animal lying time. Computers and Electronics in Agriculture, 2009, 66(1): 106-111.

[31]Robert B, White B J, Renter D G, Larson R L. Evaluation of three-dimensional accelerometers to monitor and classify behavior patterns in cattle. Computers and Electronics in Agriculture, 2009, 67(1/2): 80-84.

[32]Cornou C. Classification of sows' activity types from acceleration patterns using univariate and multivariate model. Computers and Electronics in Agriculture, 2010, 72(2): 53-60.

[33]Cornou C. Modelling and monitoring sows' activity types in farrowing house using acceleration data. Computers and Electronics in Agriculture, 2011, 76(2): 316-324.

[34]Cornou C. Sows' activity classification device using acceleration data–a resource constrained approach. Computers and Electronics in Agriculture, 2011, 77(1): 110-117.

[35]Brehme U, Stollberg U, Holz R, Schleusener T. ALT pedometer— new sensor-aided measurement system for improvement in oestrus detection. Computers and Electronics in Agriculture, 2008, 62(1): 73-80.

[36]Andonovic I, Michie C, Gilroy M, Goh H G, Kwong K H, Sasloglou K, Wu T. Wireless sensor networks for cattle health monitoring//ICT Innovations Conference 2009. Ohrid, Macedonia, Springer, 2010: 21-31.

[37]Kwong K H,Wu T T,Goh H G,Stephen B, Gilroy M, Michie C, Andonovic I. Wireless sensor networks in agriculture:Cattle monitoring for farming industries. Progress In Electro-magnetics Research Symposium, 2009, 5(1): 1719-1723.

[38]Nadimi E S, Sogaardc H T, Bak T. ZigBee-based wireless sensor networks for classifying the behaviour of a herd of animals using classification trees. Biosystems Engineering, 2008, 100(2): 167-176.

[39]Watanabe N, Sakanoue S, Kawamura K, Kozakai T. Development of an automatic classification system for eating, ruminating and resting behavior of cattle using an accelerometer. Grassland Science, 2008, 54(4): 231-237.

[40]Guo Y, Corke P, Poulton G, Wark T, Hurley G B, Swain D. Animal behaviour understanding using wireless sensor networks. Proceedings of 31st IEEE Conference on Local Computer Networks. Tampa, FL, 2006: 607-614.

[41]Guo Y, Poulton G, Corke P, Hurley G J B, Wark T, Swain D L. Using accelerometer, high sample rate GPS and magnetometer data to develop a cattle movement and behaviour model. Ecological Modeling, 2009, 220(17): 2068-2075.

[42]尹 令, 刘财兴, 洪添胜, 周皓恩, Kwong K H. 基于无线传感器网络的奶牛行为特征监测系统设计. 农业工程学报, 2010, 26(3): 203-208.

Yin L, Liu C X, Hong T S, Zhou H E, Kwong K H.Design of system for monitoring dairy cattle's behavioral features based on wireless sensor networks. Transactions of the CSAE, 2010,26(3): 203-208. (in Chinese)

[43]尹 令, 洪添胜, 刘迎湖, 刘财兴. 基于无线传感器网络支持向量机奶牛行为特征识别. 传感技术学报, 2011, 24(3): 458-462.

Yin L, Hong T S, Liu Y H, Liu C X. Cow behavioral features recognition using binary decision tree support vector machines based on wireless sensor network. Chinese Journal of Sensors and Actuators, 2011, 24(3): 458-462. (in Chinese)

[44]Chapinal N, Veira D M, Weary D M, Keyserlingk M A G. Technical note: Validation of a system for monitoring individual feeding and drinking behavior and intake in group-housed cattle drinking behavior and intake in group-housed cattle. Journal of Dairy Science, 2007, 90(12): 5732-5736.

[45]康瑞娟, 张小栓, 傅泽田, 穆维松. 基于PDA和FSM的肉牛养殖可追溯信息采集与传输方法. 农业工程学报, 2010, 26(1): 227-231.

Kang R J, Zhang X S, Fu Z T, Mu W S. Method of traceability information acquisition and transmission for beef cattle sector based on PDA and FSM. Transactions of the CSAE, 2010, 26(1): 227-231. (in Chinese)

[46]庞 超, 何东健, 李长悦, 黄 超, 郑李鹏. 基于RFID与WSN的奶牛养殖溯源信息采集与传输方法. 农业工程学报, 2011, 27(9): 147-152.

Pang C, He D J, Li C Y, Huang C, Zheng L P. Method of traceability information acquisition and transmission for dairy cattle based on integrating of RFID and WSN. Transactions of the CSAE, 2011, 27(9): 147-152. (in Chinese)

[47]熊本海, 傅润亭, 林兆辉, 罗清尧, 杨 亮. 散养模式下猪只个体标识及溯源体系的建立. 农业工程学报, 2009,25(3): 98-102.

Xiong B H, Fu R T, Lin Z H, Luo Q Y, Yang L. Identification of swine individuals and construetion of traceability system under free-range pig-rearing system. Transactions of the CSAE, 2009, 25(3):98-102. (in Chinese)

[48]李明学, 黄立平. RFID在农业中的应用研究. 安徽农业科学, 2007, 35(20): 6333-6334.

Li M X, Huang L P. Application research of RFID in agriculture. Journal of Anhui Agricultural Sciences, 2007, 35(20): 6333- 6334.(in Chinese)

[49]朱会霞, 王福林, 索瑞霞. 物联网在中国现代农业中的应用. 中国农学通报,2011, 27(2): 310-314.

Zhu H X, Wang F L, Suo R X. The Application of the Internet of Things in China Modern Agriculture. Chinese Agricultural Science Bulletin, 2011, 27(2): 310-314. (in Chinese)

[50]Intrakamhaeng M, Chavananikul V, Suriyasombbon A. Financial feasibility study of radio frequency identification (RFID) implementation in pig and dairy farms//Proceedings of the 6th Chulalongkorn University Veterinary Annual Conference, Bangkok, Thailand, 2007: 86.

[51]Reiners K, Hegger A, Hessel F E, Böckb S, Wendl G, Vandenweghe H F A. Application of RFID technology using passive HF transponders for the individual identification of weaned piglets at the feed trough. Computers and Electronics in Agriculture, 2009, 68(2): 178-184.

[52]钟芳葵. 基于RFID和ARM嵌入式技术的猪行为自动监测系统设计. 镇江: 江苏大学, 2010.

Zhong F K. Design of automated monitoring system of pig behavior based on RFID and ARM-LINUX. Zhenjiang: Jiangsu University, 2010. (in Chinese)

[53]Ostersen T, Cornou C, Kristensen A R. Detecting oestrus by monitoring sows' visits to a boar. Computers and Electronics in Agriculture, 2010, 74(1): 51-58.

[54]Tu X Y, Du S X, Tang L, Xin H W, Wood B. A real-time automated system for monitoring individual feed intake and body weight of group housed turkeys. Computers and Electronics in Agriculture, 2011, 75(2): 313-320.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!