Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (2): 369-375.doi: 10.3864/j.issn.0578-1752.2012.02.020

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Study and Application of Induced Pluripotent Stem Cells

 MIAO  Xiang-Yang, CHEN  Xiao-Ying   

  1. 1.中国农业科学院北京畜牧兽医研究所,北京 100193
    2.山东农业大学动物科技学院,山东泰安 271018
  • Received:2010-06-30 Online:2012-01-15 Published:2010-09-27

Abstract: The study of induced pluripotent stem cells (iPS cells/iPSCs) has become hot spot of stem cell research since the mouse embryonic fibroblast and tail tip fibroblast were successfully reprogrammed to iPSCs. Compared with embryonic stem cells, iPS cells have many advantages, such as simple operation and high stability. The iPSCs has potential values in both the fundamental study of biology and clinical application. iPS cells’ application would be very useful in various fields, for example, creating genetic models for human diseases, obtaining transgenic animals for organ transplantation therapies, improving animal production traits and disease resistance, as well as for bio-pharmaceuticals and so on. In addition, the application of iPSCs would have a great significance for solving the long-standing problems of stem cell research ethical issues and immune rejection. With the combination of gene therapy and cell transplantation therapies, the iPSCs research findings have been applied to animal disease models and transgenic animals. And iPS cells technology elicits a great promise for patient-specific cell therapy and development of gene targeted drugs. Furthermore, the technology also provides a novel platform for the research of iPS cells reprogramming mechanism and pathological process of human disease. However, at the present stage iPSCs’ research is just beginning and there is still much work to do before iPSCs can be considered as a clinically reliable cell source. The research progress, current situation and future application prospects of iPSCs technology were discussed in the paper.

Key words: reprogramming, embryonic stem cells, induced pluripotent stem cells

[1]Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663-676.

[2]Vogel G. Breakthrough of the year. Reprogramming cells. Science, 2008, 322(5909): 1766-1767.

[3]Hanna J, Wernig M, Markoulaki S, Sun C W, Meissner A, Cassady J P, Beard C, Brambrink T, Wu L C, Townes T M, Jaenisch R. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 2007, 318(5858): 1920-1923.

[4]Zhao X Y, Li W, Lü Z, Liu L, Tong M, Hai T, Hao J, Guo C L, Ma Q W, Wang L, Zeng F Y, Zhou Q. iPS cells produce viable mice through tetraploid complementationnear-final version. Nature, 2009, 461(7260): 86-90.

[5]Zhao Y, Yin X L, Qin H,  Zhu F F, Liu H S, Yang W F, Zhang Q,  Xiang C G, Hou P P, Song Z H, Liu Y X, Yong J, Zhang P B, Cai J, Liu M, Li H G, Li Y Q, Qu X X, Cui K, Zhang W Q, Xiang T T, Wu Y T, Zhao Y D, Liu C, Yu C, Yuan K H, Lou J N, Ding M X, Deng H K. Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell, 2008, 3(5): 475-479.

[6]Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee M J, Ji H, R. Ehrlich L I , Yabuuchi A, Takeuchi A, Cunniff K C, Hongguang H, Mckinney-Freeman S, Naveiras O, Yoon T J, Irizarry R A, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin S H, Weissman I L, Feinberg A P, Daley G Q. Epigenetic memory in induced pluripotent stem cells. Nature, 2010, 467: 285-290.

[7]Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 2009, 458(7239): 771-775.

[8]Sun N, Panetta N J, Gupta D M, Wilson K D, Lee A, Jia F J, Hu S J, Cherry A M, Robbins R C, Longaker M T, Wu J C. Feeder-free derivation of induced pluripot- ent stem cells from adult human adipose stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(37): 15720-15725.

[9]Cai J, Li W, Su H, Qin D, Yang J, Zhu F, Xu J, He W, Guo H, Labuda K, Peterbauer A, Wolbank S, Zhong M, Li Z, Wu W, So KF, Redl H, Zeng L, Esteban M A, Pei D. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. The Journal of Biological Chemistry, 2010, 285(15): 11227-11234.

[10]Zhao X Y, Li W, Lü Z, Liu L, Tong M, Hai T, Hao J, Guo CL, Wang X, Wang L, Zeng F, Zhou Q. Efficient and rapid generation of induced pluripotent stem cells using alternative culture medium. Cell Research, 2010, 20(3): 383-386.

[11]Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell, 2009, 5(3): 237-241.

[12]Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science, 2008, 322(5903): 945-949.

[13]Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science, 2008, 322(5903): 949-953.

[14]Woltjen K, Michael I P, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P T, Gertsenstein M, Kaji K, Sung Hoon-Ki, Nagy A. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 2009, 458(7329): 766-770.

[15]Hasegawa K, Cowan A B, Nakatsuji N, Suemori H. Efficient multicistronic expression of a transgene in human embryonic stem cells. Stem Cells, 2007, 25(7): 1707-1712.

[16]Szymczak A L, Workman C J, Wang Y, Vignali K M, Dilioglou S, Vanin E F, Vignali D A. Correction of multi-gene deficiency in vivo using a single‘self-cleaving’ 2A peptide-based retroviral vector. Nature Biotechnology, 2004, 22(5): 589-594.

[17]Zhou H Y, Wu S L, Joo J Y, Zhu S Y, Han D W, Lin T X, Trauger S, Bien G, Yao S S, Zhu Y, Siuzdak G, Schöler H R, Duan L X, Ding S. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 2009, 4: 381-384.

[18]Kim D, Kim C H, Moon J I, Chung Y G, Chang M Y, Han B S, Ko S, Yang E, Cha K Y, Lanza R, Kim K S. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 2009, 4: 472-476.

[19]Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, Nakagawa M, Koyanagi M, Tanabe K, Ohnuki M, Ogawa D, Ikeda E, Okano H, Yamanaka S. Variation in the safety of induced pluripotent stem cell lines. Nature Biotechnology, 2009, 27(8): 743-745.

[20]Ho P J, Yen M L, Lin J D, Chen L S, Hu H I, Yeh C K, Peng C Y, Lin C Y, Yet S F, Yen B L. Endogenous KLF4 expression in human fetal endothelial cells allows for reprogramming to pluripotency with just OCT3/4 and SOX2. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30(10): 1905-1907.

[21]Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S. Promotion of direct reprogramming by transformation-deficient Myc. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(32): 14152-14157.

[22]Stadtfeld M, Maherali N, Breault D T, Hochedlinger K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2008, 2(3): 230-240.

[23]Mikkelsen T S, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein B E, Jaenisch R, Lander E S, Meissner A. Dissecting direct reprogramming through integrative genomic analysis. Nature, 2008, 454(7200): 49-55.

[24]Warren L, Manos P D, Ahfeldt T, Loh Y H, Li H, Lau F, Ebina W, Mandal P K, Smith Z D, Meissner A, Daley G Q, Brack A S, Collins J J, Cowan C, Schlaeger T M, Rossi De J. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 2010, 7(5): 618-630.

[25]Ezashi T, Telugu B P V L, Alexenko A P, Sachdev S, Sinha S, Roberts R M. Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 10993-10998.

[26]Wu Z, Chen J J, Ren J T, Bao L, Liao J, Cui C, Rao L J, Li H, Gu Y J, Dai H M, Zhu H, Teng X K, Cheng L, Xiao L. Generation of pig-induced pluripotent stem cells with a drug-inducible system. Journal of Molecular Cell Biology, 2009, 1(1): 46-54.

[27]Li Y, Cang M, Lee A S, Zhang K, Liu D. Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined. PLoS One 6:e15947 (2011).

[28]Bao L, He L X Z, Chen J J, Wu Z, Liao J, Rao L J, Ren J T, Li H, Zhu H, Qian L, Gu Y J, Dai H M, Xu X, Zhou J Q, Wang W, Cui C, Xiao L. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Research, 2011, 21: 600-608.

[29]Hanna J, Wernig M, Markoulaki S, Sun C W, Meissner A, Cassady J P, Beard C, Brambrink T, Wu L C, Townes T M, Jaenisch R. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 2007, 318(5858): 1920-1923.

[30]Ebert D, Yu J Y, Jr Rose F F, Mattis V B, Lorson C L, Thomson J A, Svendsen C N. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 2009, 457(7227): 277-280.

[31]Lee G, Papapetrou E P, Kim H, Chambers S M, Tomishima M J, Fasano C A, Ganat Y M, Menon J, Shimizu F, Viale A, Tabar V, Sadelain M, Studer L. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature, 2009, 461(7262): 402-406.

[32]Dimos J T, Rodolfa K T, Niakan K K, Weisentha l L M, Mitsumoto  H, Chung W, Croft G F, Saphier G, Leibel R, Goland R, Wichterle H, Henderson C E, Eggan K. Induced pluripotent stem cells generat-ed from patients with ALS can be differentiated into motor neurons. Science, 2008, 321(5893): 1218-1221.

[33]Park I H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch M W, Cowan C, Hochedlinger K, Daley G Q. Disease-specific induced pluripotent stem cells. Cell, 2008, 134(5): 877-886.

[34]Soldner F, Hockemeyer D, Beard C, Gao Q, Bell G W, Cook E G, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 2009, 136(5): 964-977.

[35]Rashid S T, Corbineau S, Hannan N, Marciniak S J, Miranda E, Alexander G, Huang-Doran I, Griffin J, Ahrlund-Richter L, Skepper J, Semple R, Weber A, Lomas D A, Vallier L. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. The Jouranl of Clinical Investigation, 2010, 120(90): 3127-3136.

[36]Noritaka Y, Shiro B, Shinji K, Akira N, Takahiro M, Hiraku D, Shinya Y, Tatsutoshi N, Toshio H. The effects of cardioactive drugs on cardiomyocytes derived from human induced pluripotent stem cells. Biochemical and Biophysical Research Communications, 2009, 387(3): 482-488.
[1] DU Jun-Hui, CAO Wen-Guang. Advances in Differentiation of iPS Cells into Male Germ Cells [J]. Scientia Agricultura Sinica, 2014, 47(16): 3308-3314.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!