Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (2): 320-329.doi: 10.3864/j.issn.0578-1752.2012.02.014

• HORTICULTURE • Previous Articles     Next Articles

Polymorphism of DFR Gene Intron 2 and Intron 3 in Sweet Cherry

 WANG  Nian, YAN  Jin-Hui, ZHANG  Kai-Chun, WANG  Jing, ZHANG  Xiao-Ming, YAN  Guo-Hua   

  1. 1.北京市农林科学院林业果树研究所, 北京 100093
    2.北京市大兴区兴海学校, 北京100076
  • Received:2011-07-07 Online:2012-01-15 Published:2011-11-15

Abstract: 【Objective】 The relationship between polymorphism of DFR gene and pericarp colors was studied in 70 sweet cherry varieties. 【Method】 DNA sequences analysis was applied to detect the polymorphism of DFR gene in 10 sweet cherry varieties (Prunus avium L.) of different colors in pericarp. Special primers were designed to amplify the polymorphic DNA fragments. 70 sweet cherry varieties  (P. avium L.) were used to test DFR gene polymorphism. 【Result】 The DNA sequences of partial DFR gene about 1 kb were obtained from sweet cherry (P. avium). The identity of these DNA sequences was 80% with DFR gene of peach (Prunus persica). The identity of predicted amino acid sequences was 99% with the amino acid sequence of DFR in sweet cherry. This partial DFR gene contained 3 extrons and 3 introns. Two polymorphic loci were detected in intron 2 and intron 3. Three haplotypes and five haplotype combinations were found among 70 sweet cherry varieties which are composed of yellow pericarp group, yellow with a pink blush pericarp group and red pericarp group. There was no significant difference in the DFR gene frequencies between yellow with a pink blush pericarp group and dark red pericarp group. 【Conclusion】 Two polymorphism    loci were detected in intron 2 and intron 3 of DFR gene. Preponderatn alleles frequencies of 70 sweet cherry varieties was 0.864 in intron 2 and  0.679 in intron 3,respectively. There is no direct relationship between pericarp colors and polymorphisms DFR gene in intron 2 and intron 3.

Key words: sweet cherry, DFR gene, pericarp color, allele frequencies, gene polymorphism

[1]Ballester A R, Molthoff J, de Vos R, Hekkert B L, Orzaez D, Fernández-Moreno J P, Tripodi P, Silvana randillo, Martin C, Heldens J, Ykema M, Granell A, Bovy A. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. American Society of Plant Biologists, 2010, 152: 71-84.

[2]刘  娟, 冯群芳, 张  杰. 二氢黄酮醇4-还原酶基因(DFR)与花色的修饰. 植物生理学通讯, 2005, 6: 715-719.

Liu J, Feng Q F, Zhang J. Dihydroflavonol 4-reductase gene (DFR) and flower color modulation. Plant Physiology Communications, 2005, 6: 715-719. (in Chinese)

[3]张学英. 李果实着色与花色素苷合成机理研究[D]. 杭州:浙江大学, 2008.

Zhang X Y. Research on pigmentation and mechanism of anthocyanin synthesis in plum (Prunus spp. )fruits[D]. Hangzhou: Zhejiang University, 2008. (in Chinese)

[4]Xie D Y, Lisa A. Jackson, Cooper J D, Ferreira D, Paiva N L. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula1a. Plant Physiology, 2004, 134: 979-994.

[5]Holton T A, Cornish E. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell 1995, 7: 1071-1083.

[6]Dixon R A, Steele C L. Flavonoid and isoflavonoids-a gold mine for metabolic engineering. Trends in Plant Science, 1999, 4: 394-400.

[7]Brenda W S. Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 2001, 126: 485-493.

[8]刘光德, 雷兴华, 祝钦泷, 钟光驰, 郭铁英, 李艳冬, 眭顺照, 李名扬. 金荞麦二氢黄酮醇4-还原酶基因(FdDFR1)的克隆及序列分析. 中国农业科学, 2009, 42(1): 55-63.

Liu G D, Lei X H Zhu Q L, Zhong G C, Guo T Y, Li Y D, Sui S Z, Li M Y. Cloning and sequence analysis of a DFR gene from Fagopyrum dibotrys (D. Don) Hara. Scientia Agricultura Sinica, 2009, 42(1): 55-63. (in Chinese)

[9]Johnson E T, Ryu S, Yi H, Shin B, Cheong H, Choi G. Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. The Plant Journal, 2001, 25: 325-333.

[10]王志刚, 韩明玉, 赵彩平, 张桂粉. 油桃果肉颜色性状的RAPD分子标记研究. 西北植物学报, 2006, 26(2): 0300-0304.

Wang Z G, Han M Y, Zhao C P, Zhang G F. RAPD markers of flesh color of Nectarine. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(2): 0300-0304. (in Chinese)

[11]赵  静, 田义轲, 王彩虹, 戴洪义, 王  东. 与苹果果皮红色性状相关的RAPD分子标记的筛选. 果树学报, 2006, 23(2): 165-168.

Zhao J, Tian Y K, Wang C H, Dai H Y, Wang D. Identification of RAPD marker linked to the red skin traits of apples. Journal of Fruit Science, 2006, 23(2): 165-168. (in Chinese)

[12]孙道杰, 何中虎, 王  辉, 夏先春. 小麦籽粒PPO活性分子标记研 究. 西北农林科技大学学报: 自然科学版, 2006, 39( 4): 149-156.

Sun D J, He Z H, Wang H, Xia X C. Development of molecular marker for grain PPO activity in bread wheat. Journal of Northwest Sci-Tech University of Agriculture and Forestry: Nature Science Edition, 2006, 39(4): 149-156. (in Chinese)

[13]Parker J L. What makes a cherry red?[D]. Adelaide: The University of Adelaide. 2011.

[14]Rasmussen E B, Lis J T. Short transcripts of the termary complex provide insight into RNA polymeraseⅡ elongational pausing. Journal of Molecular Biology, 1995, 252: 522-535.

[15]Fogle H W. Inheritance of fruit color in sweet cherry (Prunus avium). The Journal of Heredity, 1958, 49(6): 294-298.

[16]Crisosto C H, Crisosto G M, Metheney P. Consumer acceptance of ‘Brooks’ and ‘Bing’cherries is mainly dependent on fruit SSC and visual skin color. Postharvest Biology Technology, 2003, 28, 159-167.

[17]Díaz-Mula H M, Castillo S B, Martínez-Romero D B, Valero D B, Zapata P J B, Guillén F B, Serrano M A. Sensory, nutritive and functional properties of sweet cherry as affected by cultivar and ripening stage. Food Science and Technology International, 2009, 15(6): 535-543.

[18]佟兆国, 王富荣, 章  镇, 赵剑波, 张开春, 闫国华, 周  宇, 姜立杰. 一种从果树成熟叶片提取DNA的方法. 果树学报, 2008, 25(1): 122-125.

Tong Z G, Wang F R, Zhang Z, Zhao J B, Zhang K C, Yan G H, Zhou Y, Jiang L J. A method for DNA extraction from mature leaves of fruit trees. Journal of fruit science, 2008, 25(1): 122-125. (in Chinese)

[19]朱  军. 遗传学(第3版). 北京:中国农业出版社, 2005: 340-346.

Zhu J. Genetics (Edition 3rd).Beijing: China Agriculture Press, 2005: 340-346. (in Chinese)

[20]Kim S, Yoo K S, Pike M L. Development of a PCR-based marker utilizing a deletion mutation in the dihydroflavonol 4-reductase (DFR) gene responsible for the lack of anthocyanin production in yellow onions ( Allium cepa). Theoretical and Applied Genetics, 2005: 110(3): 588-595.

[21]Kim S, Baek D, Cho D Y. Identification of two novel inactive DFR-A alleles responsible for failure to produce anthocyanin and development of a simple PCR-based molecular marker for bulb color selection in onion (Allium cepa L. ). Theoretical and Applied Genetics, 2009, 118: 1391-1399.

[22]谢先芝, 吴乃虎. 高等植物基因的内含子. 科学通报, 2002, 47(10): 731-737.

Xie X Z,Wu N H. Introns of genes in higher plants. Chinese Science Bulletin, 2002, 47(10): 731-737. (in Chinese)

[23]Kristiansen K N, Rohde W. Structure of the Hordeum vulgare gene encoding dihydroflavonol-4-reductase and molecular analysis of ant18 mutants blocked in flavonoid synthesis. Molecular and General Genetics, 1991, 230: 49-59.

[24]Shirley B W, Hanley S, Goodman H M. Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. The Plant Cell, 1992, 4(3): 333-347. [25]Bartelsman M B, O’Neill S D, Tong Y, Yoder J I. Characterization of the gene encoding dihydroflavonol 4-reductase in tomato. Gene, 1994, 138: 153-157.

[26]Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L. ). Plant Molecular Biology, 1994, 24: 743-755.

[27]Chen M, SanMiguel P, Bennetzen J L. Sequence organization and conservation in sh2/a1-homologous regions of sorghum and rice. Genetics, 1998, 148: 435-443.

[28]Elomaa P, Mehto M, Kotilainen M, Mika M, Helariutta Y, Nevalainen L, Teeri T H. A bHLH transcription factor mediates organ, region and flower type specific signals on dihydroflavonol-4-reductase (dfr) gene expression in the inflorescence of Gerbera hybrida (Asteraceae). The Plant Journal, 1998, 16: 93-99.

[29]Espley R V, Hellens R P, Putterill J, Stevenson D E, Sumathi K A, Allan A C. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal, 2007, 49: 414-427.

[30]Kobayashia S, Ishimarub M, Ding C K, Yakushijid H, Goto N. Comparison of UDP-glucos: flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin. Plant Science, 2001, 160: 543-550.

[31]卢其能, 杨  清, 沈春修. 马铃薯愈伤组织中色素含量与4个花色苷合成相关基因的表达差异. 基因组学与应用生物学, 2009, 28(4): 678-684.

Lu Q N, Yang Q, Shen C X. The differential expression of pigments content and four anthocyanin biosynthetic genes in potato callus. Genomics and Applied Biology, 2009, 28(4): 678-684. (in Chinese)
[1] SUN XiePing, LUO YouJin, ZHOU GuangWen. Effects of Selenium on Melatonin Content and Glutathione Redox Cycle in Sweet Cherry Leaves [J]. Scientia Agricultura Sinica, 2017, 50(22): 4373-4381.
[2] LI Yan, LI Ling, LI Shao-Xuan, WANG Hui, YE Bao-Xing, GAO Dong-Sheng. Effect of High Temperature on the Flower Development of    Sweet Cherry in Solar Greenhouse [J]. Scientia Agricultura Sinica, 2011, 44(10): 2101-2108.
[3] . Changes of Aroma Components in‘Hongdeng’Sweet Cherry [J]. Scientia Agricultura Sinica, 2007, 40(6): 1222-1228 .
[4] . Interaction between Cryptococcus laurentii, Monilinia fructicola and sweet cherry fruit at 25 and 1°C [J]. Scientia Agricultura Sinica, 2007, 40(12): 2811-2820 .
[5] ,. Effects of Defoliation on Endongenous Hormones and Active Oxygen Metabolism of Sweet Cherry Flower Buds During Dormancy [J]. Scientia Agricultura Sinica, 2005, 38(01): 203-207 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!