Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (22): 4551-4559.doi: 10.3864/j.issn.0578-1752.2011.22.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Conditional and Unconditional QTL Mapping of Grain Starch Accumulation in Wheat

 TIAN  Bin, LIU  Bin, ZHU  Zhan-Ling, XIE  Quan-Gang, TIAN  Ji-Chun   

  1. 1.山东农业大学农学院/作物生物学国家重点实验室,山东泰安 271018
  • Received:2011-05-20 Online:2011-11-15 Published:2011-09-19

Abstract:  【Objective】Conditional QTL is a method of studying the dynamic expression of quantitative traits genes, and it was applied to better reveal dynamic expression of gene in wheat starch.【Method】QTLs for developmental behavior of wheat grain starch content (GSC) were mapped using a double haploid (DH) population with 168 progeny lines, derived from a cross between two elite Chinese wheat cultivars Huapei 3×Yumai 57. GSC were evaluated at five seed filling stages (12d, 17d, 22d, 27d, and 32d after ?owering) in six different environments. This study could attain more information to understand the dynamic effects of corresponding QTLs at different developmental stages as well as the genetic information of GSC accumulation.【Result】The results showed that seven unconditional QTLs and four conditional QTLs were detected in different seed filling periods totally, but no one conditional QTL was detected in all periods. Seven unconditional QTLs were detected on chromosomes 2A, 3A, 3B, 4A and 5D, the unconditional QTL named QGsc4A persistently expressed at all seed filling stages, while unconditional QTLs of different seed filling periods could explain 13.57%, 16.57%, 21.96%, 22.53%, 22.90% of phenotypic variance respectively. Among the four conditional QTLs, QGsc4A was detected 12d, 17d, and 32d after ?owering, which accounted for 21.80% of phenotypic variation and played the most important role for the accumulation of GSC. The rest unconditional QTLs and conditional QTLs were only detected in a special or few periods, and there was no conditional QTL detected up to 27 days after ?owering. 【Conclusion】QTL analyses were performed using a mixed linear model approach, which suggest that the QTLs express depending on different developmental stages. The present data provide new insights into understanding the genetic mechanism and regulation network underlying the development of GSC in wheat, which is beneficial to genetic manipulations for yield.

Key words: wheat(Triticum aestivum L.), doubled haploid population, grain starch content (GSC), QTL mapping for developmental behavior, Conditional QTL

[1]Hurkman W J, McCue K F, Altenbach S B, Korn A, Tanaka C K, Kothari K M, Johnson E L, Bechtel D B, Wilson J D, Anderson O D, DuPont F M. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science, 2003, 164: 873-881.

[2]Davis E A. Wheat starch. Cereal Foods World, 1994, 39: 34 -36.

[3]Rahman S, Li Z, Batey I, Cochrane M P, Appels R, Morell M. Genetic alteration of starch functionality in wheat. Journal of Cereal Science, 2000, 31(1): 91-110.

[4]闫素辉, 王振林, 戴忠民, 李文阳, 付国占, 贺明荣, 尹燕枰. 两个直链淀粉含量不同的小麦品种籽粒淀粉合成酶活性与淀粉积累特征的比较. 作物学报, 2007, 33(1): 84-89.

Yan S H, Wang Z L, Dai Z M, Li W Y, Fu G Z, He M R, Yin Y P. Activities of enzymes involved in starch synthesis and accumulation in grains of two wheat cultivars with a different amylose content. Acta Agronomica Sinica, 2007, 33(1): 84-89. (in Chinese)

[5]王 芳, 王宪泽. 小麦籽粒淀粉合成动态及其相关酶活性的研究. 麦类作物学报, 2004, 24(2): 57-60.

Wang F, Wang X Z. Study on the dynamic changes of starch synthesis and their related enzymes in wheat. Journal of Triticeae Crops, 2004, 24(2): 57-60. (in Chinese)

[6]Miura H, Wickramasinghe M H A, Subasinghe R M. Development of near isogenic lines of wheat carrying different null Wx alleles and their starch properties. Euphytica, 2002, 123: 353-359.

[7]Araki E, Miura H, Sawada S. Differential effects of the null alleles at the three Wx loci on the starch-pasting properties of wheat. Theoretical Applied Genetics, 2000, 100(7): 1113-1120.

[8]Zhao L, Zhang K P, Liu B, Deng Z Y, Qu H L, Tian J C. A comparison of grain protein content QTLs and ?our protein content QTLs across environments in cultivated wheat. Euphytica, 2010, 174: 325-335.

[9]Kuchel H, Langridge P, Mosionek L, Williams K, Jefferies S P. The genetic control of milling yield, dough rheology and baking quality of wheat. Theoretical Applied Genetics, 2006, 112: 1487-1495.

[10]Groos C, Bervas E, Chanliaud E, Charmet G. Genetic analysis of bread-making quality scores in bread wheat using a recombinant inbred line population. Theoretical Applied Genetics, 2007, 115: 313-323.

[11]Pozniak C J, Knox R E, Clarke F R, Clarke J M. Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theoretical Applied Genetics, 2007, 114: 525-537.

[12]McCartney C A, Somers D J, Lukow O, Ames N, Noll J, Cloutier S, Humphreys D G, McCallum B D. QTL analysis of quality traits in the spring wheat cross RL4452בAC Domain’. Plant Breeding, 2006, 125: 565-575.

[13]孙宪印. 不同环境下小麦籽粒形态性状及微营养物质含量的QTL分析[D]. 山东: 山东农业大学, 2009: 34-35.

Sun X Y. QTL anslysis of the grain morphologic traits and micronutrient content of wheat(Triticum aestivum L.) under different environments[D]. Shandong: Shandong Agricultural University, 2009: 34-35. (in Chinese)

[14]吴为人, 李维明, 卢浩然. 数量性状基因座的动态定位策略. 生物数学学报, 1997, 12(5): 490-498.

Wu W R, Li W M, Lu H R. Strategy of dynamic mapping of quantitative trait loci. Journal of Biomathematics, 1997, 12(5): 490-498. (in Chinese)

[15]Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141: 1633-1639.

[16]Qu Y Y, Mu P, Zhang H L, Chen C Y, Gao Y M, Tian Y Y, Wen F, Li Z C. Mapping QTLs of root morphological traits at different growth stages in rice. Genetica, 2008, 133: 187-200.

[17]Liu G F, Zhu H T, Liu S W, Zeng R Z, Zhang Z M, Li W T, Ding X H, Zhao F M, Zhang G Q. Unconditional and conditional QTL mapping for the developmental behavior of tiller number in rice (Oryza sativa L.). Genetica, 2010, 138: 885-893.

[18]刘宗华, 汤继华, 王春丽, 田国伟, 卫晓轶, 胡彦民, 崔党群. 氮胁迫与非胁迫条件下玉米不同时期株高的动态QTL定位. 作物学报, 2007, 33(5): 782-789.

Liu Z H, Tang J H, Wang C L, Tian G W, Wei X Y, Hu Y M, Cui D Q. QTL analysis of plant height under N-stress and N-input at different stages in maize. Acta Agronomica Sinica, 2007, 33(5): 782-789. (in Chinese)

[19]韩英鹏, 滕卫丽, 杜玉萍, 孙德生, 张忠臣, 徐香玲. 不同发育时期大豆籽粒干物质积累的QTL动态分析, 中国农业科学, 2010, 43(7): 1328-1338.

Han Y P, Teng W L, Du Y P, Sun D S, Zhang Z C, Xu X L. Dynamic QTL analysis of dry matter accumulation in soybean seed at different developmental stages. Scientia Agricultura Sinica, 2010, 43(7): 1328-1338. (in Chinese)

[20]刘  宾, 赵  亮, 张坤普, 朱占玲, 田  宾, 田纪春. 小麦株高发育动态QTL定位. 中国农业科学, 2010, 43(22): 4562-4570.

Liu B, Zhao L, Zhang K P, Zhu Z L, Tian B, Tian J C. Genetic dissection of plant height at different growth stages in common wheat. Scientia Agricultura Sinica, 2010, 43(22): 4562-4570. (in Chinese)

[21]Wu X S, Wang Z H, Chang X P, Jing R L. Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes. Journal of Experimental Botany, 2010, 61(11): 2923-2937.

[22]李卫华, 尤明山, 刘  伟, 徐  杰, 刘春雷, 李保云, 刘广田. 小麦GMP含量发育动态的QTL定位. 作物学报, 2006, 32(7): 995-1000. 

Li W H, You M S, Liu W, Xu J, Liu C L, Li B Y, Liu G T. QTL mapping for developmental behavior of GMP content in wheat. Acta Agronomica Sinica, 2006, 32(7): 995-1000. (in Chinese)

[23]刘  丽, 李卫华, 刘  伟, 曹连莆, 李保云, 刘广田. 小麦谷蛋白膨胀指数发育动态的 QTL分析. 中国农业科学, 2008, 41(11): 3838-3844.

Liu L, Li W H, Liu W, Cao L P, Li B Y, Liu G T. Analysis of QTL for SIG at different developmental stages in wheat. Scientia Agricultura Sinica, 2008, 41(11): 3838-3844 (in Chinese)

[24]海  燕, 康明辉. 高产早熟小麦新品种花培3号的选育. 河南农业科学, 2007(5): 36-37. 

Hai Y, Kang M H. Breeding of a new wheat vatiety Huapei 3 with high yield and early maturing. Journal of Henan Agricultural Sciences, 2007(5): 36-37. (in Chinese)

[25]郭春强, 柏志安, 廖平安, 靳文奎. 优质高产小麦新品种豫麦57. 中国种业, 2004(4): 54.

Guo C Q, Bai Z A, Liao P A, Jin W K. New high quality and yield wheat variety Yumai 57. China Seed Induatry, 2004(4): 54. (in Chinese)

[26]Zhang K P, Zhao L, Tian J C, Chen G F, Jiang X L, Liu B. A genetic map conducted using a doubled haploid population derived from two elite Chinese Common Wheat (Triticum aestivum L.) varieties. Journal of Integrative Plant Biology, 2008, 50(8): 941-950.

[27]田纪春. 谷物品质测试理论与方法. 北京: 科学出版社, 2006: 153-154.

Tian J C. Theory and Method of Test in Grain Quality. Beijing: Science Press, 2006: 153-154. (in Chinese)

[28]朱  军. 运用混合线性模型定位复杂数量性状基因的方法. 浙江大学学报: 工学版, 1999, 33(3): 327-335.

Zhu J. Mixed model approaches of mapping genes for complex quantitative traits. Journal of Zhejiang University: Engineer Science, 1999, 33(3): 327-335. (in Chinese)

[29]Yang J, Zhu J. Methods for predicting superior genotypes under multiple environments based on QTL effects. Theoretical Applied Genetics, 2005, 110: 1268-1274.

[30]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrubb M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genetica, 1997, 14: 11-13.

[31]Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epistasis and QTL ×environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theoretical Applied Genetics, 2001, 103: 153-160.

[32]Quarrie S A, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash D Z, Farmer P, Saker L. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring×SQ1 and its use to compare QTLs for grain yield across a range of environments. Theoretical Applied Genetics, 2005, 110: 865-880.

[33]Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTL for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theoretical Applied Genetics, 2006, 113: 753-766.

[34]Araki E, Miura H, Sawada S. Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theoretical Applied Genetics, 1999, 98: 977-984.

[35]方先文, 姜 东, 戴廷波, 荆 奇, 曹卫星. 小麦籽粒总淀粉及支链淀粉含量的遗传分析. 作物学报, 2003, 29(6): 925-929.

Fang X W, Jiang D, Dai T B, Jing Q, Cao W X. Genetic analysis of grain starch and amylopectin contents in wheat grains. Acta Agronomica Sinica, 2003, 29(6): 925-929. (in Chinese)

[36]Udall J A, Souza E, Anderson J. Qunatitative trait loci for flour viscosity in winter wheat. Crop Science, 1999, 39: 238-242.

[37]Wang Z H, Wu X S, Ren Q, Chang X P, Li R Z, Jing R L. QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica, 2010, 174: 447-458.

[38]Zhao F M, Liu G F, Zhu H T, Ding X H, Zeng R Z, Zhang Z M, Li W T, Zhang G Q. Unconditional and conditional QTL mapping for tiller numbers at various stages with single segment substitution lines in rice (Oryza sativa L.). Scientia Agricultura Sinica, 2008, 7(3): 257-265.

[39]朱占玲, 刘  宾, 田  宾, 谢全刚, 李文福, 田纪春. 小麦籽粒蛋白质含量的动态QTL定位. 中国农业科学, 2011, 44(15): 3078-3085.

Zhu Z L, Liu B, Tian B, Xie Q G, Li W F, Tian J C .Dynamic QTL mapping of wheat protein content in developing grains. Scientia Agricultura Sinica, 2011, 44(15):3078-3085. (in Chinese)

[40]Zhao J Y, Becker H C, Zhang D Q, Zhang Y F, Ecke W. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theoretical and Applied Genetics, 2006, 113: 33-38.
[1] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[2] HUANG Ji-xiang, XIONG Hua-xin, PAN Bing, NI Xi-yuan, ZHANG Xiao-yu, ZHAO Jian-yi. Mapping QTL of Flowering Time and Their Genetic Relationships with Seed Weight in Brassica napus [J]. Scientia Agricultura Sinica, 2016, 49(16): 3073-3083.
[3] ZHU Zhan-Ling, LIU Bin, TIAN Bin, XIE Quan-Gang, LI Wen-Fu, TIAN Ji-Chun. Dynamic QTL Mapping of Wheat Protein Content in Developing Grains [J]. Scientia Agricultura Sinica, 2011, 44(15): 3078-3085.
[4] DING An-Ming, CUI Fa, LI Jun, ZHAO Chun-Hua, WANG Xiu-Qin, WANG Hong-Gang. QTL Analysis on Grain Yield per Plant and Plant Height in Wheat [J]. Scientia Agricultura Sinica, 2011, 44(14): 2857-2867 .
[5] TIAN Bin,ZHU Zhan-ling,LIU Bin,XIE Quan-gang,TIAN Ji-chun
. Quantitative Trait Loci for Dough Alveogram Characters in Cultivated Wheat
[J]. Scientia Agricultura Sinica, 2010, 43(24): 4991-4999 .
[6] LIU Bin,ZHAO Liang,ZHANG Kun-pu,ZHU Zhan-ling,TIAN Bin,TIAN Ji-chun
.

Genetic Dissection of Plant Height at Different Growth Stages in Common Wheat

[J]. Scientia Agricultura Sinica, 2010, 43(22): 4562-4570 .
[7] . Photosynthetic characteristics and antioxidative metabolism during flag leaf senescence and nitrogen effects of winter wheat [J]. Scientia Agricultura Sinica, 2008, 41(1): 53-62 .
[8] 宋彦霞 YanXia Song,,,,. Detection of QTLs for heading in wheat using different populations [J]. Scientia Agricultura Sinica, 2006, 39(11): 2186-2193 .
[9] ,,,,. Effects of Nitrogen Rates on Activities of Key Regulatory Enzymes for Grain Starch and Protein Accumulation in Wheat Grown Under Drought and Waterlogging from Anthesis to Maturity [J]. Scientia Agricultura Sinica, 2005, 38(06): 1132-1141 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!