Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (16): 3454-3462.doi: 10.3864/j.issn.0578-1752.2011.16.019

• VETERINARY SCIENCE • Previous Articles     Next Articles

The Immunoreaction in Balb/c Mice Immunized with Duck Enteritis Virus gC Genetic Vaccine with Chitosan as Deliver Carrier

JIANG  Jin-Feng, CHENG  An-Chun, WANG  Ming-Shu, LU  Li-Ting, ZHU  De-Kang, JIA  Ren-Yong, CHEN  Xiao-Yue   

  1. 1. 四川农业大学预防兽医研究所
    2. 四川农业大学动物医学院禽病防治研究中心
    3. 四川农业大学动物医学院动物疫病与人类健康四川省重点实验室
  • Received:2010-11-27 Revised:2011-04-11 Online:2011-08-15 Published:2011-04-25

Abstract: 【Objective】 The objective of the experiment is to investigate the influence of chitosan on the immunoreaction induced duck enteritis virus gC genetic vaccine. 【Method】 Balb/c mice were immunized with 50µg per dose of DEV gC genetic vaccine with chitosan as deliver carrier by a single intramuscular injection and oral. Naked plasmid groups of different immunizing doses by intramscular injection, live attenuated vaccine group and physiological saline group were applied as control groups. Cellular immunity, humoral immunity and mucosal immunity were detected, respectively. 【Result】 Compared with DEV gC genetic vaccine with chitosan as deliver carrier by oral and 50 µg of naked plasmid group by intramuscular injection, DEV gC genetic vaccine with chitosan as deliver carrier by intramuscular injection induced stronger cellular and humoral immunity. This vaccine induced similar cellular immune response compared with live attenuated vaccine that induced stronger humoral immune responses. Mucosal immunity was induced only by oral DEV gC genetic vaccine with chitosan as deliver carrier. 【Conclusion】 Chitosan had certain adjuvant’s ability. It has provided a new strategy to obstain more effective DEV gC genetic vaccine. Many factors affecting the immunity efficiency of vaccine need to be optimiazed further for application of this vaccine generally .

Key words: chitosan, DEV gC gene, genetic vaccine, cellular immunity, humoral immunity, mucosal immunity

[1]Shawky S, Sandhu T.  Inactivated vaccine for protection against duck virus enteritis. Avian Diseases, 1997, 41: 461-468.

[2]程安春, 汪铭书, 崔恒敏. 鸭瘟鸭病毒性肝炎二联弱毒疫苗的研究1.最佳配比的筛选, 安全性及免疫效力. 畜牧兽医学报, 1996, 26: 466-474.

Cheng A C, Wang M S, Cui H M, Siudy on bivalent attenuated vaccines against DP and DVH 1. the most appropriate proportion, safety and immune efficaycy test. Acta Veterinaria et Zootechnica Sinica, 1996, 26(5): 466-474. (in Chinese)

[3]Islam M, Samad M, Rahman M, Hossain M, Akter S. Assessment of immunologic responses in khaki cambell ducks vaccinated against duck plague. Trends in Pharmacol Sciences, 2005, 4: 36-38.

[4]Shams H. Recent developments in veterinary vaccinology. Veterinary Journal, 2005, 170: 289-299.

[5]刁有祥, 吕桂霞, 郑福英, 王  刚. 一种新型鸭瘟病原的分离鉴定及其特征. 中国兽医学报, 2006, 26(2): 136-139.

Diao Y X, Lv G X, Zheng H Y, Wang G. Isolation and identification and characteristics of the pathogen of a new duck plague. Chinese Veterinary Science, 2006, 26(2): 136-139. (in Chinese)

[6]Spear P G. Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiology, 2004, 6: 401-410.

[7]Kaashoek M J, Rijsewijk F A, Ruuls R C, Keil G M, Thiry E, Pastoret P P, Van Oirschot J T. Virulence, immunogenicity and reactivation of bovine herpesvirus 1 mutants with a deletion in the gC, gG, gI, gE, or in both the gI and gE gene. Vaccine, 1998, 16: 802-809.

[8]Chang Y J, Jiang M, Lubinski J M, King R D, Friedman H M. Implications for herpes simplex virus vaccine strategies based on antibodies produced to herpes simplex virus type 1 glycoprotein gC immune evasion domains. Vaccine, 2005, 23: 4658-4665.

[9]Ober B T, Teufel B, Wiesmuller K H, Jung G, Pfaff E, Saalmuller A, Rziha H J. The porcine humoral immune response against pseudorabies virus specifically targets attachment sites on glycoprotein gC. Journal of Virology, 2000, 74: 1752-1760.

[10]Ober B T, Summerfield A, Mattlinger C, Wiesmuller K H, Jung G, Pfaff E, Saalmuller A, Rziha H J. Vaccine-induced, pseudorabies virus-specific, extrathymic CD4+CD8+ memory T-helper cells in swine. Journal of Virology, 1998, 72: 4866-4873.

[11]Gupta P K, Saini M, Gupta L K, Rao V D, Bandyopadhyay S K, Butchaiah G, Garg G K, Garg S K. Induction of immune responses in cattle with a DNA vaccine encoding glycoprotein C of bovine herpesvirus-1. Veterinaryt Microbiology, 2001, 78: 293-305.

[12]Gogev S, Vanderheijden N, Lemaire M, Schynts F, D'Offay J, Deprez I, Adam M, Eloit M, Thiry E. Induction of protective immunity to bovine herpesvirus type 1 in cattle by intranasal administration of replication-defective human adenovirus type 5 expressing glycoprotein gC or gD. Vaccine, 2002, 20: 1451-1465.

[13]Gerdts V, Jons A, Makoschey B, Visser N, Mettenleiter T C. Protection of pigs against Aujeszky's disease by DNA vaccination. Journal of General Virology, 1997, 78 ( Pt 9): 2139-2146.

[14]Jr.Dubensky T W,  Liu M A, Ulmer J B.  Delivery systems for gene-based vaccines. Molecular Medicine, 2000, 6: 723-732.

[15]Dupuis M, Denis-Mize K, Woo C, Goldbeck C, Selby M J, Chen M, Otten G R, Ulmer J B, Donnelly J J, Ott G, McDonald D M. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. Journal of Immunology, 2000, 165: 2850-2858.

[16]Guliyeva Ü, ner F, Özsoy S, Haziroglu R. Chitosan microparticles containing plasmid DNA as potential oral gene delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 62: 17-25.

[17]Bowman K, Sarkar R, Raut S, Leong K. Gene transfer to hemophilia A mice via oral delivery of FVIII-chitosan nanoparticles. Journal of Controlled Release, 2008, 132: 252-259.

[18]Koping-Hoggard M, Tubulekas I, Guan H, Edwards K, Nilsson M, Varum K M, Artursson P. Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Therapy, 2001, 8: 1108-1121.

[19]Mao H, Roy K, Troung-Le V, Janes K, Lin K, Wang Y, August J, Leong K. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. Journal of Control Release, 2001, 70: 399-421.

[20]Elson C O, Ealding W, Lefkowitz J. A lavage technique allowing repeated measurement of IgA antibody in mouse intestinal secretions. Journal of Immunol Methods, 1984, 67: 101-108.

[21]柳忠辉, 吕昌龙. 免疫学常用实验技术. 北京: 科学出版社, 2002.

Liu Z H, Lv C L. Used Immunological Test Technology. Beijing: Science Press, 2002. (in Chinese)

[22]Ulmer J B, Wahren B, Liu M A. Gene-based vaccines: recent  technical and clinical advances. Trends Molecular Medicine, 2006, 12: 216-222.

[23]Chalmers W S. Overview of new vaccines and technologies. Veterinaryt Microbiology, 2006, 117: 25-31.

[24]Wolff J, Malone R, Williams P, Chong W, Acsadi G, Jani A, Felgner P. Direct gene transfer into mouse muscle in vivo. Science, 1990, 247: 1465.

[25]Greenland J R, Letvin N L. Chemical adjuvants for plasmid DNA vaccines. Vaccine, 2007, 25: 3731-3741.

[26]Khatri K, Goyal A K, Gupta P N, Mishra N, Vyas S P. Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. International Journal of Pharmaceutics, 2008, 354: 235-241.

[27]Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher A N, Davis S S. Chitosan as a novel nasal delivery system for vaccines. Advanced Drug Delivery Reviews, 2001, 51: 81-96.

[28]Babiuk S, Mookherjee N, Pontarollo R, Griebel P, van Drunen Littel-van den Hurk S, Hecker R, Babiuk L. TLR9-/- and TLR9+/+ mice display similar immune responses to a DNA vaccine. Immunology, 2004, 113: 114-120.

[29]李琦涵, 姜  莉. 病毒感染的分子生物学. 北京: 化学工业出版社, 2004.

Li Q H, Jiang L. The Molecular Biology of Viral Infection. Beijing: Chemical Industry Press, 2004. (in Chinese)
[1] LIANG Di, YANG Xi, GUO YuRong. Effects of Different Concentrations of Apple Polyphenols on the Physicochemical Properties of Chitosan Membrane Fluids [J]. Scientia Agricultura Sinica, 2018, 51(14): 2799-2813.
[2] WANG Bao-Gang, HOU Yu-Ru, LI Wen-Sheng, YANG Jun-Jun, SHI Lei, YANG Yuan, FENG Xiao-Yuan. Effects of Chitosan Treatments on Inhibition of Superficial Scald and Quality of European Pears (Pyrus communis L. cv. Early Red Comice) During Storage [J]. Scientia Agricultura Sinica, 2013, 46(16): 3424-3431.
[3] MA Yan-Xia, YU Ji-Hua, ZHANG Guo-Bin, CAO Gang. Protective Effects of Exogenous Chitosan on Oxidative Damage in Pepper Seedling Leaves Under Water Stress [J]. Scientia Agricultura Sinica, 2012, 45(10): 1964-1971.
[4] SHEN Fu-Xiao, JIANG Jin-Feng, CHENG An-Chun, WANG Ming-Shu, LU Li-Ting, JIA Ren-Yong, ZHU De-Kang, CHEN Xiao-Yue, SUN Tao. Antigenic Expression and Distribution of Chitosan/pcDNA-DPV-gC Gene in the Vaccinated Ducklings [J]. Scientia Agricultura Sinica, 2011, 44(18): 3909-3917.
[5] DENG Yu-yan,MING Jian,ZHANG Zhao-qi,ZENG Kai-fang
. Effect of Chitosan on Salicylic Acid and Active Oxygen Metabolism of Navel Orange Fruit
[J]. Scientia Agricultura Sinica, 2010, 43(4): 812-820 .
[6] LUO Zi-sheng,ZHANG Li. Effect of Chitosan/nano-SiOx Complex on Quality and Physiology of Fresh-Cut Bamboo Shoot
[J]. Scientia Agricultura Sinica, 2010, 43(22): 4694-4700 .
[7] WANG Quan-xi,WU Bao-cheng,LI Guo-ping,HUANG Yi-fan
.

Effects of Duck Infected by Muscovy Duck Reovirus on Humoral Immunity Function

[J]. Scientia Agricultura Sinica, 2010, 43(2): 424-429 .
[8] LIU Feng-xiang,CUI Zhi-zhong,GUO Hui-jun. Immune Enhancement Effect of Mixed Herbal Extracts in Chicks Immnunosuppressed by Reticuloendotheliosis Virus Infection
[J]. Scientia Agricultura Sinica, 2009, 42(6): 2164-2171 .
[9] . Chitosan Inhibiting the Growth of Phytopathogenic Fungi and Control of Postharvest Diseases of Fruits
[J]. Scientia Agricultura Sinica, 2009, 42(2): 626-635 .
[10] . Studies on the Preparation and Immunity Effect of NDV Chitosan Microsphere [J]. Scientia Agricultura Sinica, 2008, 41(2): 593-598 .
[11] ,,,. Effect of Carboxymethyl Chitosan on Chilling Tolerance in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2004, 37(11): 1660-1665 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!