中国农业科学 ›› 2026, Vol. 59 ›› Issue (1): 161-178.doi: 10.3864/j.issn.0578-1752.2026.01.012

• 园艺 • 上一篇    下一篇

不同果形葡萄果实维管束形态结构、分布特征及其水分运输功能差异

冯伟晴(), 倪媛蒨(), 费腾, 李有梅, 谢兆森*()   

  1. 扬州大学园艺园林学院,江苏扬州 225009
  • 收稿日期:2025-06-04 接受日期:2025-08-02 出版日期:2026-01-01 发布日期:2026-01-07
  • 通信作者:
    谢兆森,E-mail:
  • 联系方式: 冯伟晴,E-mail:13952724025@163.com。倪媛蒨,E-mail:13770018651@163.com。冯伟晴和倪媛蒨为同等贡献作者。
  • 基金资助:
    国家自然科学基金(31872050); 江苏省研究生科研创新项目(KYCX25_4049)

Differences in Vascular Bundle Morphological Structure, Distribution, and Water Transport Function in Grape Fruits of Different Shapes

FENG WeiQing(), NI YuanQian(), FEI Teng, LI YouMei, XIE ZhaoSen*()   

  1. College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu
  • Received:2025-06-04 Accepted:2025-08-02 Published:2026-01-01 Online:2026-01-07

摘要:

【目的】通过研究5种果形葡萄品种的果实生长发育规律、维管束形态结构、分布特征和水分运输功能差异,明确不同果形对维管束分布的影响以及与水分运输的关系,为生产上加强对不同果形葡萄的管理提供理论依据。【方法】在栽培管理一致的情况下,以4年生‘小辣椒’葡萄(弯形果)、‘甜蜜蓝宝石’葡萄(长圆柱形果)、‘玫瑰香’葡萄(圆形果)、‘阳光玫瑰’葡萄(椭圆形果)以及激素处理(GA3+CPPU)的‘阳光玫瑰’葡萄(倒卵圆形果)为试验材料,采用徒手切片、石蜡切片、染料示踪等方法观察不同果形葡萄果实的维管束形态结构与分布特征,基于Image J测量木质部导管数量和直径,通过Hagen-Poiseuille公式计算导水率,分析不同果形葡萄果实维管束水分运输效率。【结果】不同果形葡萄果实维管束分布存在差异,果柄维管束进入果实后朝不同方向延伸为周缘维管束、中央维管束、胚维管束(有核品种)。‘小辣椒’葡萄一级周缘维管束数量最多,沿果皮向果顶延伸时形成大量分支,致使果实上部维管束数量与密度最高;‘甜蜜蓝宝石’葡萄果实中部和底部周缘维管束数量多且密度高;激素处理后的‘阳光玫瑰’葡萄维管束数量和密度显著增加,表明外源激素可促进周缘维管束分布。从维管束结构与水分运输关系看,‘甜蜜蓝宝石’葡萄周缘维管束横截面积最大,‘小辣椒’葡萄中央维管束横截面积最大,长果形葡萄果实维管束导管直径较大,维管束中水分运输速率较高;激素处理后‘阳光玫瑰’葡萄周缘维管束面积和导管横径增加,促进水分运输速率。不同果形葡萄各发育时期果实水分运输速率变化显示,硬核期各品种果实维管束水分运输速率最高,其中‘小辣椒’葡萄水分运输速率最高,为16.67 cm·h-1,‘玫瑰香’葡萄水分运输速率最低,为5.67 cm·h-1;转色期(软化期)果实水分运输速率均下降,此时‘甜蜜蓝宝石’葡萄水分运输速率最大,为4.34 cm·h-1;成熟期水分运输速率进一步下降,‘小辣椒’葡萄仍保持最高水分运输速率,为0.69 cm·h-1,且激素处理后的‘阳光玫瑰’葡萄在所有时期水分运输速率均提高,说明水分运输速率与维管束面积和导管直径密切相关。【结论】不同果形葡萄果实的维管束结构与分布存在差异,进而影响葡萄果实水分运输功能。

关键词: 葡萄, 果形, 维管束, 水分运输, 导水率

Abstract:

【Objective】This study aims to explore the impact of different fruit shapes on vascular bundle distribution and their relationship with water transport in grape fruits. It focused on the growth patterns, vascular bundle structure, and water transport functions in five grape varieties with distinct fruit shapes, providing a theoretical basis for managing different fruit-shaped grapes in production. 【Method】Under uniform cultivation and management, four-year-old plants of ‘Xiao Lajiao’ (curved fruit), ‘Sweet Sapphire’ (long-cylindrical fruit), ‘Muscat Hamburg’ (round fruit), ‘Shine Muscat’ (elliptical fruit), and hormone-treated ‘Shine Muscat’ (inverted-ovate fruit, treated with GA3+CPPU) were used as experimental materials. The morphology and spatial distribution of vascular bundles in fruits of contrasting shapes were examined using hand sectioning, paraffin sectioning, and dye-tracer techniques. Xylem vessel number and diameter were quantified using Image J, and hydraulic conductivity was calculated with Hagen-Poiseuille equation to assess the water-transport efficiency of fruit vascular bundle in different fruit shapes.【Result】Pronounced differences were observed in vascular bundle architecture among grape fruits of contrasting shapes. After entering the fruit, the pedicel bundles diverged into peripheral, central, and embryo (in seeded cultivars) systems. ‘Xiao Lajiao’ had the most primary peripheral vascular bundles, forming numerous branches towards the fruit apex, resulting in the highest vascular bundle density in the upper fruit. ‘Sweet Sapphire’ had abundant and highly dense peripheral vascular bundles in the fruit’s middle and lower parts. Hormone-treated ‘Shine Muscat’ showed significantly increased vascular bundle number and density, indicating that exogenous hormones promote peripheral vascular bundle distribution. In terms of vascular bundle structure and water transport, ‘Sweet Sapphire’ had the largest peripheral vascular bundle cross-sectional area, while ‘Xiao Lajiao’ had the largest central vascular bundle cross-sectional area. Long-shaped grape fruits exhibited larger vascular bundle vessel diameters, resulting in higher hydraulic conductivity. Hormone treatment increased the peripheral vascular bundle area and vessel diameter in ‘Shine Muscat’, enhancing water transport. The water transport rate peaked at the green-hard stage. ‘Xiao Lajiao’ had the highest rate at 16.67 cm·h-1, while ‘Muscat Hamburg’ had the lowest at 5.67 cm·h-1. During the veraison, when the water transport rate decreased, the maximum water transport rate of ‘Sweet Sapphire’ grapes was 4.34 cm·h-1. At the mature stage, the rate declined further, but ‘Xiao Lajiao’ still maintained the highest rate at 0.69 cm·h-1 due to its vascular bundle advantages. Hormone-treated ‘Shine Muscat’ showed improved water transport rates across all stages, highlighting the close relationship between water transport rate and vascular bundle area and vessel diameter.【Conclusion】The structure and distribution of vascular bundles in grape fruits with different shapes are different, which affects the water transport function of grape fruits.

Key words: grape, fruit shape, vascular bundle, water transport, hydraulic conductivity