[1] |
ABUDABOS A M, AL-ATIYAT R M, KHAN R U. A survey of mycotoxin contamination and chemical composition of distiller’s dried grains with solubles (DDGS) imported from the USA into Saudi Arabia. Environmental Science and Pollution Research, 2017, 24(18): 15401-15405.
|
[2] |
ESKOLA M, KOS G, ELLIOTT C T, HAJŠLOVÁ J, MAYAR S, KRSKA R. Worldwide contamination of food-crops with mycotoxins:validity of the widely cited ‘FAO estimate’ of 25%. Critical Reviews in Food Science and Nutrition, 2020, 60(16): 2773-2789.
|
[3] |
BERTHILLER F, CREWS C, DALL’ASTA C, DE SAEGER S, HAESAERT G, KARLOVSKY P, OSWALD I P, SEEFELDER W, SPEIJERS G, STROKA J. Masked mycotoxins: A review. Molecular Nutrition & Food Research, 2013, 57(1): 165-186.
|
[4] |
DALL’ASTA C, BERTHILLER F. Masked mycotoxins in food: Formation, occurrence and toxicological relevance. Cambridge: Royal Society of Chemistry, 2015.
|
[5] |
DONG F, WANG S, YU M, SUN Y, XU J, SHI J. Natural occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in various wheat cultivars grown in Jiangsu province, China. World Mycotoxin Journal, 10(3): 285-294.
|
[6] |
SCHWARTZ-ZIMMERMANN H E, HAMETNER C, NAGL V, SLAVIK V, MOLL W D, BERTHILLER F. Deoxynivalenol (DON) sulfonates as major DON metabolites in rats: From identification to biomarker method development, validation and application. Analytical and Bioanalytical Chemistry, 2014, 406(30): 7911-7924.
|
[7] |
BRYŁA M, STĘPNIEWSKA S, MODRZEWSKA M, WAŚKIEWICZ A, PODOLSKA G, KSIENIEWICZ-WOŹNIAK E, YOSHINARI T, STĘPIEŃ Ł, URBANIAK M, ROSZKO M, GWIAZDOWSKI R, KANABUS J, PIERZGALSKI A. Dynamics of deoxynivalenol and nivalenol glucosylation in wheat cultivars infected with Fusarium culmorum in field Conditions-A 3 year study (2018-2020). Journal of Agricultural and Food Chemistry, 2022, 70(14): 4291-4302.
|
[8] |
KOVALSKY PARIS M P, SCHWEIGER W, HAMETNER C, STÜCKLER R, MUEHLBAUER G J, VARGA E, KRSKA R, BERTHILLER F, ADAM G. Zearalenone-16-O-glucoside: A new masked mycotoxin. Journal of Agricultural and Food Chemistry, 2014, 62(5): 1181-1189.
doi: 10.1021/jf405627d
pmid: 24386883
|
[9] |
BORZEKOWSKI A, DREWITZ T, KELLER J, PFEIFER D, KUNTE H J, KOCH M, ROHN S, MAUL R. Biosynthesis and characterization of Zearalenone-14-sulfate, Zearalenone-14-glucoside and Zearalenone- 16-glucoside using common fungal strains. Toxins, 2018, 10(3): 104.
|
[10] |
PAN Y Y, LIU C D, YANG J G, TANG Y Q. Conversion of Zearalenone to β-Zearalenol and Zearalenone-14, 16-diglucoside by Candida parapsilosis ATCC 7330. Food Control, 2022, 131: 108429.
|
[11] |
GAB-ALLAH M A, TAHOUN I F, YAMANI R N, REND E A, SHEHATA A B. Natural occurrence of deoxynivalenol, nivalenol and deoxynivalenol-3-glucoside in cereal-derived products from Egypt. Food Control, 2022, 137: 108974.
|
[12] |
NIE D X, ZHU X T, LIU M H, CHENG M, FAN K, ZHAO Z H, HUANG Q W, ZHANG X L, HAN Z. Molecularly imprinted polymer-based electrochemical sensor for rapid detection of masked deoxynivalenol with Mn-doped CeO2 nanozyme as signal amplifier. Journal of Hazardous Materials, 2024, 477: 135366.
|
[13] |
BERTHILLER F, WERNER U, SULYOK M, KRSKA R, HAUSER M T, SCHUHMACHER R. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin Zearalenone in the model plant Arabidopsis thaliana. Food Additives and Contaminants, 2006, 23(11): 1194-1200.
|
[14] |
TROMBETE F, BARROS A, VIEIRA M, SALDANHA T, VENÂNCIO A, FRAGA M. Simultaneous determination of deoxynivalenol, deoxynivalenol-3-glucoside and nivalenol in wheat grains by HPLC-PDA with immunoaffinity column cleanup. Food Analytical Methods, 2016, 9(9): 2579-2586.
|
[15] |
ZHANG Z Q, CAI Y L, FAN K, HUANG Q W, ZHAO X Y, CAO H J, ZHAO Z H, TANGNI E K, HAN Z. Development of a reliable UHPLC-MS/MS method for simultaneous determination of Zearalenone and Zearalenone-14-glucoside in various feed products. Frontiers in Chemistry, 2022, 10: 955266.
|
[16] |
DE COLLI L, ELLIOTT C, FINNAN J, GRANT J, ARENDT E K, MCCORMICK S P, DANAHER M. Determination of 42 mycotoxins in oats using a mechanically assisted QuEChERS sample preparation and UHPLC-MS/MS detection. Journal of Chromatography B, 2020, 1150: 122187.
|
[17] |
CASU A, CAMARDO LEGGIERI M, TOSCANO P, BATTILANI P. Changing climate, shifting mycotoxins: A comprehensive review of climate change impact on mycotoxin contamination. Comprehensive Reviews in Food Science and Food Safety, 2024, 23(2): e13323.
|
[18] |
DONG F, QIU J B, XU J H, YU M Z, WANG S F, SUN Y, ZHANG G F, SHI J R. Effect of environmental factors on Fusarium population and associated trichothecenes in wheat grain grown in Jiangsu province, China. International Journal of Food Microbiology, 2016, 230: 58-63.
|
[19] |
NAKAGAWA H, OHMICHI K, SAKAMOTO S, SAGO Y, KUSHIRO M, NAGASHIMA H, YOSHIDA M, NAKAJIMA T. Detection of a new Fusarium masked mycotoxin in wheat grain by high-resolution LC-Orbitrap™ MS. Food Additives & Contaminants: Part A, 2011, 28(10): 1447-1456.
|
[20] |
KOVALSKY P, KOS G, NÄHRER K, SCHWAB C, JENKINS T, SCHATZMAYR G, SULYOK M, KRSKA R. Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize: An extensive survey. Toxins, 2016, 8(12): 363.
|
[21] |
SUZUKI T, IWAHASHI Y. Low toxicity of deoxynivalenol-3- glucoside in microbial cells. Toxins, 2015, 7(1): 187-200.
|
[22] |
TITTLEMIER S A, BRUNKHORST J, CRAMER B, DEROSA M C, LATTANZIO V M T, MALONE R, MARAGOS C, STRANSKA M, SUMARAH M W. Developments in mycotoxin analysis: An update for 2019-2020. World Mycotoxin Journal, 2021, 14(1): 3-26.
|
[23] |
MICHLMAYR H, MALACHOVÁ A, VARGA E, KLEINOVÁ J, LEMMENS M, NEWMISTER S, RAYMENT I, BERTHILLER F, ADAM G. Biochemical characterization of a recombinant UDP- glucosyltransferase from rice and enzymatic production of deoxynivalenol-3-O-β-D-glucoside. Toxins, 2015, 7(7): 2685-2700.
|
[24] |
王刚, 胡俊强, 史建荣, 徐剑宏. 利用大孔吸附树脂与高速逆流色谱联用技术大量制备脱氧雪腐镰刀菌烯醇的方法. 江苏农业科学, 2018, 46(23): 207-211.
|
|
WANG G, HU J Q, SHI J R, XU J H. Preparative purification of deoxynivalenol by combined use of macroporous resin and high-speed countercurrent chromatography. Jiangsu Agricultural Sciences, 2018, 46(23): 207-211. (in Chinese)
|
[25] |
GUO X, WANG J L. Comparison of linearization methods for modeling the Langmuir adsorption isotherm. Journal of Molecular Liquids, 2019, 296: 111850.
|
[26] |
ITO Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. Journal of Chromatography A, 2005, 1065(2): 145-168.
pmid: 15782961
|
[27] |
HABLER K, FRANK O, RYCHLIK M. Chemical synthesis of deoxynivalenol-3-β-d-[13C6]-glucoside and application in stable isotope dilution assays. Molecules, 2016, 21(7): 838.
|
[28] |
王丹丹, 刘芫汐, 左甜甜, 昝珂, 金红宇. 大孔吸附树脂及其在中药领域应用研究进展. 中国药事, 2022, 36(7): 826-835.
doi: 10.16153/j.1002-7777.2022.06.012
|
|
WANG D D, LIU Y X, ZUO T T, ZAN K, JIN H Y. Research progress of macroporous adsorption resin and its application in traditional Chinese medicines. Chinese Pharmaceutical Affairs, 2022, 36(7): 826-835. (in Chinese)
doi: 10.16153/j.1002-7777.2022.06.012
|
[29] |
杨楠, 阮国永, 王朝玉, 杨建波, 刘云, 谢飞燕, 李长军, 潘峰. 利用大孔吸附树脂同时清除云实根粗多糖色素和蛋白成分的研究. 贵州师范大学学报(自然科学版), 2023, 41(5): 107-113.
|
|
YANG N, RUAN G Y, WANG C Y, YANG J B, LIU Y, XIE F Y, LI C J, PAN F. Study on simultaneous decoloration and deproteinization of crude polysaccharide from the root of Caesalpinia decapetala by using macroporous adsorption resin. Journal of Guizhou Normal University (Natural Sciences), 2023, 41(5): 107-113. (in Chinese)
|
[30] |
赵沙沙, 何海, 张小荣, 郭玫, 崔治家, 邵晶. 红芪多糖 “脱蛋白-大孔吸附树脂” 的纯化富集工艺考察. 药物流行病学杂志, 2023, 32(6): 679-688.
|
|
ZHAO S S, HE H, ZHANG X R, GUO M, CUI Z J, SHAO J. Study on purification and enrichment technology of Hedysarum polysaccharide “deproteinization-macroporous adsorption resin”. Chinese Journal of Pharmacoepidemiology, 2023, 32(6): 679-688. (in Chinese)
|
[31] |
SPÓRNA-KUCAB A, JERZ G, KUMORKIEWICZ-JAMRO A, TEKIELI A, WYBRANIEC S. High-speed countercurrent chromatography for isolation and enrichment of betacyanins from fresh and dried leaves of Atriplex hortensis L. var. “Rubra”. Journal of Separation Science, 2021, 44(23): 4222-4236.
|
[32] |
YUAN J J, TUO S, SHI X H, TU J L. A new combined technology: Macroporous adsorption resin and high speed counter current chromatography for hydroxytyrosol separation from olive leaf enzymatic hydrolysate. Journal of Chromatography B, 2024, 1235: 124058.
|
[33] |
宋道光, 陈志. 高速逆流色谱法从小叶金钱草中分离四种黄酮苷类化合物. 食品工业科技, 2022, 43(24): 93-101.
|
|
SONG D G, CHEN Z. Separation of four flavonoid glycosides from Hydrocotyle sibthorpioides Lam. by high-speed counter-current chromatography. Science and Technology of Food Industry, 2022, 43(24): 93-101. (in Chinese)
|
[34] |
YANG X, SHEN C, LI H M, WANG N N, MA J L, WANG S, ZHAO J Y, CHEN J L, YANG L, CHEN T, LI Y L. Combined chromatographic strategy based on macroporous resin, high-speed counter-current chromatography and preparative HPLC for systematic separation of seven antioxidants from the fruit of Terminalia billerica. Journal of Separation Science, 2019, 42(20): 3191-3199.
|
[35] |
CHEN T, LIU Y L, CHEN C, ZOU D L, YOU J M, SUN J, LI Y L. Application of high-speed counter-current chromatography combined with macroporous resin for rapid enrichment and separation of three anthraquinone glycosides and one stilbene glycoside from Rheum tanguticum. Journal of Chromatography B, 2014, 957: 90-95.
|
[36] |
WANG G, CHEN W H, HU J Q, FAN B, SHI J R, XU J H. Preparative isolation and purification of Zearalenone from rice culture by combined use of macroporous resin column and high-speed counter-current chromatography. Journal of Chromatography B, 2019, 1110: 43-50.
|
[37] |
WANG G, HE D, ZHAO F C, HU J Q, LEE Y W, SHI J R, XU J H. Extraction and purification of ustiloxin A from rice false smut balls by a combination of macroporous resin and high-speed countercurrent chromatography. Food Production, Processing and Nutrition, 2020, 2(1): 29.
|