[1] |
ZHAO L, LI M M, XU C J, YANG X, LI D M, ZHAO X, WANG K, LI Y H, ZHANG X M, LIU L X, DING F Q, DU H L, WANG C S, SUN J Z, LI W B. Natural variation in GmGBP1 promoter affects photoperiod control of flowering time and maturity in soybean. The Plant Journal, 2018, 96(1): 147-162.
|
[2] |
LI X M, FANG C, YANG Y Q, LV T X, SU T, CHEN L Y, NAN H Y, LI S C, ZHAO X H, LU S J, DONG L D, CHENG Q, TANG Y, XU M L, ABE J, HOU X L, WELLER J L, KONG F J, LIU B H. Overcoming the genetic compensation response of soybean florigens to improve adaptation and yield at low latitudes. Current Biology, 2021, 31(17): 3755-3767.
|
[3] |
KANTOLIC A G, SLAFER G A. Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering. Annals of Botany, 2007, 99(5): 925-933.
doi: 10.1093/aob/mcm033
pmid: 17452381
|
[4] |
韩天富, 盖钧镒, 邱家驯. 中国大豆不同生态类型代表品种开花前, 开花后光周期反应的比较研究. 大豆科学, 1998, 17(2): 129-134.
|
|
HAN T F, GAI J Y, QIU J X. A comparative study on pre- and post- flowering photoperiod response in various ecotypes of soybeans. Soybean Science, 1998, 17(2): 129-134. (in Chinese)
|
[5] |
SONG W W, SUN S, IBRAHIM S E, XU Z J, WU H Y, HU X G, JIA H C, CHENG Y X, YANG Z L, JIANG S B, WU T T, SINEGOVSKII M, SAPEY E, NEPOMUCENO A, JIANG B J, HOU W S, SINEGOVSKAYA V, WU C X, GAI J Y, HAN T F. Standard cultivar selection and digital quantification for precise classification of maturity groups in soybean. Crop Science, 2019, 59(5): 1997-2006.
|
[6] |
SONG W W, LIU L P, SUN S, WU T T, ZENG H Y, TIAN S Y, SUN B C, LI W B, LIU L J, WANG S M, XING H, ZHOU X A, NIAN H, LU W C, HAN X Z, WANG S Y, CHEN W Y, GUO T, SONG X Q, TIAN Z Y, CHENG Y X, SONG S H, FU L S, WANG H C, LUO R P, LIU X Y, LIU Q, ZHANG G H, LU S H, XU R, LI S Z, LU W G, ZHANG Q, WANG Z B, JIANG C G, SHEN W L, ZHANG M R, ZHU D H, WANG R Z, CHEN Y, WANG T J, ZHU X T, ZHAN Y, JIANG B J, XU C L, YUAN S, HOU W S, GAI J Y, WU C X, HAN T F. Precise classification and regional delineation of maturity groups in soybean cultivars across China. European Journal of Agronomy, 2023, 151(3): 126982.
|
[7] |
XIA Z J, WATANABE S, YAMADA T, TSUBOKURA Y, NAKASHIMA H, ZHAI H, ANAI T, SATO S, YAMAZAKI T, LÜ S X, WU H Y, TABATA S, HARADA K. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(32): E2155- E2164.
|
[8] |
WATANABE S, XIA Z J, HIDESHIMA R, TSUBOKURA Y, SATO S, YAMANAKA N, TAKAHASHI R, ANAI T, TABATA S, KITAMURA K, HARADA K. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics, 2011, 188(2): 395-407.
|
[9] |
WATANABE S, HIDESHIMA R, XIA Z J, TSUBOKURA Y, SATO S, NAKAMOTO Y, YAMANAKA N, TAKAHASHI R, ISHIMOTO M, ANAI T, TABATA S, HARADA K. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics, 2009, 182(4): 1251-1262.
|
[10] |
LIU B H, KANAZAWA A, MATSUMURA H, TAKAHASHI R, HARADA K, ABE J. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics. 2008, 180(2): 995-1007.
doi: 10.1534/genetics.108.092742
pmid: 18780733
|
[11] |
BONATO E R, VELLO N A. E6, a dominant gene conditioning early flowering and maturity in soybeans. Genetics and Molecular Biology, 1999, 22(2): 229-232.
|
[12] |
COBER E R, VOLDENG H D. A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Science, 2001, 41(3): 698-701.
|
[13] |
COBER E R, MOLNAR S J, CHARETTE M, VOLDENG H D. A new locus for early maturity in soybean. Crop Science, 2010, 50(2): 524-527.
|
[14] |
KONG F J, NAN H Y, CAO D, LI Y, WU F F, WANG J L, LU S J, YUAN X H, COBER E R, ABE J, LIU B H. A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Science, 2014, 54(6): 2529-2535.
|
[15] |
SAMANFAR B, MOLNAR S J, CHARETTE M, SCHOENROCK A, DEHNE F, GOLSHANI A, BELZILE F, COBER E R. Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theoretical and Applied Genetics, 2017, 130(2): 377-390.
|
[16] |
WANG F F, NAN H Y, CHEN L Y, FANG C, ZHANG H Y, SU T, LI S C, CHENG Q, DONG L D, LIU B H, KONG F J, LU S J. A new dominant locus, E11, controls early flowering time and maturity in soybean. Molecular Breeding, 2019, 39(5): 70.
|
[17] |
LU S J, DONG L D, FANG C, LIU S L, KONG L P, CHENG Q, CHEN L Y, SU T, NAN H Y, ZHANG D, ZHANG L, WANG Z J, YANG Y Q, YU D Y, LIU X L, YANG Q Y, LIN X Y, TANG Y, ZHAO X H, YANG X Q, TIAN C G, XIE Q G, LI X, YUAN X H, TIAN Z X, LIU B H, WELLER J L, KONG F J. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nature Genetics, 2020, 52(4): 428-436.
|
[18] |
DONG L D, LI S C, WANG L S, SU T, ZHANG C B, BI Y D, LAI Y C, KONG L P, WANG F, PEI X X, LI H Y, HOU Z H, DU H P, DU H, LI T, CHENG Q, FANG C, KONG F J, LIU B H. The genetic basis of high-latitude adaptation in wild soybean. Current Biology, 2023, 33(2): 252-262.
|
[19] |
DONG L D, CHENG Q, FANG C, KONG L P, YANG H, HOU Z H, LI Y L, NAN H Y, ZHANG Y H, CHEN Q S, ZHANG C B, KOU K, SU T, WANG L S, LI S C, LI H Y, LIN X Y, TANG Y, ZHAO X H, LU S J, LIU B H, KONG F J. Parallel selection of distinct Tof5 alleles drove the adaptation of cultivated and wild soybean to high latitudes. Molecular Plant, 2022, 15(2): 308-321.
|
[20] |
LI H Y, DU H P, HE M L, WANG J H, WANG F, YUAN W J, HUANG Z R, CHENG Q, GOU C J, CHEN Z, LIU B H, KONG F J, FANG C, ZHAO X H, YU D Y. Natural variation of FKF1 controls flowering and adaptation during soybean domestication and improvement. The New Phytologist, 2023, 238(4): 1671-1684.
|
[21] |
LI H Y, DU H P, HUANG Z R, HE M L, KONG L P, FANG C, CHEN L Y, YANG H, ZHANG Y H, LIU B H, KONG F J, ZHAO X H. The AP2/ERF transcription factor TOE4b regulates photoperiodic flowering and grain yield per plant in soybean. Plant Biotechnology Journal, 2023, 21(8): 1682-1694.
|
[22] |
DONG L D, FANG C, CHENG Q, SU T, KOU K, KONG L P, ZHANG C B, LI H Y, HOU Z H, ZHANG Y H, CHEN L Y, YUE L, WANG L S, WANG K, LI Y L, GAN Z R, YUAN X H, WELLER J L, LU S J, KONG F J, LIU B H. Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nature Communications, 2021, 12(1): 5445.
doi: 10.1038/s41467-021-25800-3
pmid: 34521854
|
[23] |
KOU K, YANG H, LI H Y, FANG C, CHEN L Y, YUE L, NAN H Y, KONG L P, LI X M, WANG F, WANG J H, DU H P, YANG Z Y, BI Y D, LAI Y C, DONG L D, CHENG Q, SU T, WANG L S, LI S C, HOU Z H, LU S J, ZHANG Y H, CHE Z J, YU D Y, ZHAO X H, LIU B H, KONG F J. A functionally divergent SOC1 homolog improves soybean yield and latitudinal adaptation. Current Biology, 2022, 32(8): 1728-1742.
|
[24] |
LU S J, ZHAO X H, HU Y L, LIU S L, NAN H Y, LI X M, FANG C, CAO D, SHI X Y, KONG L P, SU T, ZHANG F G, LI S C, WANG Z, YUAN X H, COBER E R, WELLER J L, LIU B H, HOU X L, TIAN Z X, KONG F J. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nature Genetics, 2017, 49(5): 773-779.
|
[25] |
TSUBOKURA Y, WATANABE S, XIA Z J, KANAMORI H, YAMAGATA H, KAGA A, KATAYOSE Y, ABE J, ISHIMOTO M, HARADA K. Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Annals of Botany, 2014, 113(3): 429-441.
|
[26] |
LIU L P, SONG W W, WANG L W, SUN X G, QI Y P, WU T T, SUN S, JIANG B J, WU C X, HOU W S, NI Z F, HAN T F. Allele combinations of maturity genes E1-E4 affect adaptation of soybean to diverse geographic regions and farming systems in China. PLoS ONE, 2020, 15(7): e0235397.
|
[27] |
ZHAI H, LÜ S X, WU H Y, ZHANG Y P, ZHANG X Z, YANG J Y, WANG Y Y, YANG G, QIU H M, CUI T T, XIA Z J. Diurnal expression pattern, allelic variation, and association analysis reveal functional features of the E1 gene in control of photoperiodic flowering in soybean. PLoS ONE, 2015, 10(8): e0135909.
|
[28] |
DISSANAYAKA A, RODRIGUEZ T O, DI S K, YAN F, GITHIRI S M, RODAS F R, ABE J, TAKAHASHI R. Quantitative trait locus mapping of soybean maturity gene E5. Breeding Science, 2016, 66(3): 407-415.
|
[29] |
刘路平. 大豆生育期基因单倍型鉴定及地理分布规律研究[D]. 北京: 中国农业大学, 2020.
|
|
LIU L P. Identification of soybean maturity gene haplotypes and study of their geographic distribution[D]. Beijing: China Agricultural University, 2020. (in Chinese)
|
[30] |
CHANG S S, PARK S K, KIM B C, KANG B J, KIM D U, NAM H G. Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta. The Plant Journal, 1994, 5(4): 551-558.
|
[31] |
LIN X Y, LIU B H, WELLER J L, ABE J, KONG F J. Molecular mechanisms for the photoperiodic regulation of flowering in soybean. Journal of Integrative Plant Biology, 2021, 63(6):981-994.
doi: 10.1111/jipb.13021
|
[32] |
胡雪洁, 刘路平, 王凤敏, 韩玉华, 孙宾成, 马启彬, 黄志平, 冯燕, 陈强, 杨春燕, 张孟臣, 张锴, 秦君. 利用大豆生育期基因 E1和 E2构建适宜不同生态区的 ms1基础轮回群体. 中国农业科学, 2024, 57(17): 3305-3317. doi: 10.3864/j.issn.0578-1752.2024.17.001.
|
|
HU X J, LIU L P, WANG F M, HAN Y H, SUN B C, MA Q B, HUANG Z P, FENG Y, CHEN Q, YANG C Y, ZHANG M C, ZHANG K, QIN J. Construction of ms1 basic recurrent populations adapted to different ecological regions using maturity genes E1 and E2 in soybean. Scientia Agricultura Sinica, 2024, 57(17): 3305-3317. doi: 10.3864/j.issn.0578-1752.2024.17.001. (in Chinese)
|
[33] |
LI Y L, HOU Z H, LI W W, LI H Y, LU S J, GAN Z R, DU H, LI T, ZHANG Y H, KONG F J, CHENG Y H, HE M L, MA L X, LIAO C M, LI Y R, DONG L D, LIU B H, CHENG Q. The legume-specific transcription factor E1 controls leaf morphology in soybean. BMC Plant Biology, 2021, 21(1):531.
doi: 10.1186/s12870-021-03301-1
pmid: 34773981
|
[34] |
WAN Z, LIU Y X, GUO D D, FAN R, LIU Y, XU K, ZHU J L, QUAN L, LU W T, BAI X, ZHAI H. CRISPR/Cas9-mediated targeted mutation of the E1 decreases photoperiod sensitivity, alters stem growth habits, and decreases branch number in soybean. Frontiers in Plant Science, 2022, 13: 1066820.
|
[35] |
MISHRA P, PANIGRAHI K C. GIGANTEA-an emerging story. Frontiers in Plant Science, 2015, 6: 8.
|
[36] |
MARTIN-TRYON E L, KREPS J A, HARMER S L. GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation. Plant Physiology, 2007, 143(1): 473-486.
|
[37] |
ZHAO X H, LI H Y, WANG L S, WANG J H, HUANG Z R, DU H P, LI Y R, YANG J H, HE M L, CHENG Q, LIN X Y, LIU B H, KONG F J. A critical suppression feedback loop determines soybean photoperiod sensitivity. Developmental Cell, 2024, 59(13): 1750-1763.
|
[38] |
LI F, ZHANG X M, HU R B, WU F Q, MA J H, MENG Y, FU Y F. Identification and molecular characterization of FKF1 and GI homologous genes in soybean. PLoS ONE, 2013, 8(11): e79036.
|
[39] |
吕世祥. 调控大豆E1基因表达的分子机理研究[D]. 长春: 中国科学院东北地理与农业生态研究所, 2015.
|
|
LÜ S X. Studies on molecular mechanism regulating the expression of E1 in soybean [Glycine Max (L.) Merr.][D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Science, 2015. (in Chinese)
|
[40] |
LIU W, JIANG B J, MA L M, ZHANG S W, ZHAI H, XU X, HOU W S, XIA Z J, WU C X, SUN S, WU T T, CHEN L, HAN T F. Functional diversification of Flowering Locus T homologs in soybean: GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation. The New Phytologist, 2018, 217(3): 1335-1345.
|
[41] |
WANG Y, GU Y Z, GAO H H, QIU L J, CHANG R Z, CHEN S Y, HE C Y. Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time. BMC Evolutionary Biology, 2016, 16: 79-91.
doi: 10.1186/s12862-016-0653-9
pmid: 27072125
|
[42] |
CAO D, TAKESHIMA R, ZHAO C, LIU B H, JUN A, KONG F J. Molecular mechanisms of flowering under long days and stem growth habit in soybean. Journal of Experimental Botany, 2017, 68(8): 1873-1884.
doi: 10.1093/jxb/erw394
pmid: 28338712
|