中国农业科学 ›› 2022, Vol. 55 ›› Issue (11): 2077-2091.doi: 10.3864/j.issn.0578-1752.2022.11.001
方桃红1(),张敏1,马春花1,郑晓晨1,谭文静1,田冉1,燕琼1,周新力1(
),李鑫1,杨随庄1,黄可兵1,王建锋2,韩德俊3,王晓杰2,康振生2(
)
收稿日期:
2022-01-11
接受日期:
2022-02-28
出版日期:
2022-06-01
发布日期:
2022-06-16
通讯作者:
周新力,康振生
作者简介:
方桃红,Tel:18281547320;E-mail: 基金资助:
FANG TaoHong1(),ZHANG Min1,MA ChunHua1,ZHENG XiaoChen1,TAN WenJing1,TIAN Ran1,YAN Qiong1,ZHOU XinLi1(
),LI Xin1,YANG SuiZhuang1,HUANG KeBing1,WANG JianFeng2,HAN DeJun3,WANG XiaoJie2,KANG ZhenSheng2(
)
Received:
2022-01-11
Accepted:
2022-02-28
Online:
2022-06-01
Published:
2022-06-16
Contact:
XinLi ZHOU,ZhenSheng KANG
摘要:
【目的】 评价小麦高温成株期(high temperature adult plant,HTAP)抗条锈病基因Yr52在生产中的应用价值,选育出农艺性状优良并高抗小麦条锈病品系,为充分利用现有高温成株期抗病资源、提高相关产量性状奠定基础。【方法】 通过回交和自交结合分子标记辅助选择育种方法,将小麦抗条锈病基因Yr52转育到轮选987(LX987)、百农矮抗58(AK58)和邯6172(H6172)中。在四川绵阳和陕西杨凌鉴定圃,用小麦条锈菌流行生理小种CYR32、CYR33和CYR34混合侵染,鉴定抗病基因载体品系和受体品种以及它们的高代家系的成株期抗病性。比对中国春参考基因组,结合Yr52两翼SSR分子标记Xcfa2040(6.8 cM-Yr52)和Xbarc182(1.2 cM-Yr52),在目标基因物理区间内寻找35K SNP芯片标记,并开发成dCAPS和KASP分子标记,对BC2F5:6高代群体进行抗条锈病基因Yr52的检测。【结果】 抗病性鉴定和农艺性状评价表明,在19个具LX987背景的BC2F5:6家系中,抗条锈性表现为高抗(IT=0—3,DS=1%—20%)有11个,中抗(IT=4—6,DS=15%—30%)有8个,平均千粒重(TKW)、每穗穗粒数(KPS)、单株有效分蘖(PTN)、株高(PH)和穗长(SL)分别为45.33 g、46粒、7个、113.26 cm和10.05 cm。4个具AK58背景BC2F5:6家系全部表现高抗(IT=0—3,DS=5%—25%);平均TKW、KPS、PTN、PH和SL分别为44.67 g、48粒、7个、96.54 cm和10.17 cm。5个具H6172背景的BC2F5:6家系全部表现高抗(IT=0—3,DS=5%—20%);平均TKW、KPS、PTN、PH和SL分别为43.74 g、49粒、8个、109.72 cm和10.06 cm。分子标记检测结果表明,Yr52两翼连锁的分子标记Xbarc182、Xcfa2040和Xwmc557在后代群体中的检出率分别为78.57%、66.67%和66.67%,并成功开发出1个dCAPS标记Xdcaps-Yr52-1和1个KASP标记Xkasp-Yr52-1,两者在群体中的检出率分别为73.68%和41.67%。通过比较高抗(IT=0—3)与中抗(IT=4—6)水平家系的农艺性状,结果表明,IT在0—3的家系平均TKW(P>0.05)、PTN(P>0.05)和KPS(P<0.05)高于中抗水平的家系。结合各亲本抗病性和农艺性状筛选出PH为80—105 cm、PTN≥6个、KPS≥45粒、TKW≥42 g、SL≥8 cm的材料共5份。【结论】 Yr52仍对当前主要流行小种具有成株期抗性;将Yr52导入中国主栽感病小麦品种中,选育出综合抗病性和农艺性状良好的高代材料可用于培育多基因聚合的品种,丰富抗病基因的多样性,并实现持久利用。
方桃红,张敏,马春花,郑晓晨,谭文静,田冉,燕琼,周新力,李鑫,杨随庄,黄可兵,王建锋,韩德俊,王晓杰,康振生. 小麦抗条锈基因Yr52在品种改良中的应用[J]. 中国农业科学, 2022, 55(11): 2077-2091.
FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance[J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
表1
2020—2021年在绵阳和杨凌试验点3个杂交组合的BC2F5:6和BC2F6:7群体的抗病表型数据方差分析"
鉴定地点 Location | 家系反应型 IT of line | 家系严重度 DS of lines (%) | ||||
---|---|---|---|---|---|---|
最小 Min | 最大 Max | 平均 Mean | 最小 Min | 最大 Max | 平均 Mean | |
绵阳MY (2020) | 0 | 7 | 4 | 0 | 50 | 20 |
绵阳MY (2021) | 0 | 7 | 3 | 0 | 40 | 10 |
杨凌YL (2021) | 0 | 4 | 3 | 0 | 30 | 10 |
平均Mean | 3 | 15 | ||||
变异来源Source | 自由度Df | 均方MS | 显著性a F. Sig. | 自由度Df | 均方MS | 显著性a F. Sig. |
家系 Lines | 27 | 9.97 | *** | 27 | 421.34 | *** |
区组/环境Block/Environments | 3 | 0.48 | ns | 3 | 49.07 | ** |
环境Environments | 2 | 19.54 | *** | 2 | 1156.58 | *** |
家系×环境 Lines×Environments | 54 | 1.74 | *** | 54 | 106.67 | *** |
随机误差Error | 81 | 0.42 | 81 | 12.01 | ||
遗传力H2 | 0.85 | 0.79 |
表3
与Yr52连锁的SSR标记及开发dCAPS和KASP标记的引物序列"
标记类型 Marker type | 分子标记 Marker | 物理位置a Position (Mb) | 引物序列 Primer sequence (5′-3′) | 大小 Size (bp) |
---|---|---|---|---|
SSR | Xcfa2040 | 718.43 | F:TCAAATGATTTCAGGTAACCACTA | 286[ |
R:TTCCTGATCCCACCAAACAT | ||||
Xbarc182 | 732.40 | F:CCATGGCCAACAGCTCAAGGTCTC | 102[ | |
R:CGCAAAACCGCATCAGGGAAGCACCAAT | ||||
Xwmc557 | 728.08 | F:GGTGCTTGTTCATACGGGCT | 298[ | |
R:AGGTCCTCGATCCGCTCAT | ||||
dCAPS | Xdcaps-Yr52-1 | 728.97 | F:GGAGTACCGCAGGCTTGCCGAGCGCGbTTRA | Wild:30+164 Mut:194 |
R:CCGTAGGAGAGAACCACATCGGGAAAC | ||||
KASP | Xkasp-Yr52-1 | 730.91 | F:GAAGGTGACCAAGTTCATGCTcGCCCACAACCTCTTTAGGCTGAT | |
F:GAAGGTCGGAGTCAACGGATTdCCCACAACCTCTTTAGGCTGAC | ||||
R:GATTTTAACAGTGGGTGGGGTCAGTT |
表4
结合抗病性和农艺性状筛选的优良家系统计结果"
亲本/家系 Parent/progeny lines | 抗病表现和农艺性状 Resistant performance and agronomic trait | Yr52 (+)/(-) | ||||||
---|---|---|---|---|---|---|---|---|
反应型 IT | 严重度 DS (%) | 穗长 SL (cm) | 千粒重a TKW(g) | 每穗穗粒数 KPS | 单株有效分蘖 PTN | 株高 PH (cm) | ||
PI 660057 | 0 | 0 | 0 | 41.77 | 43 | 6 | 128.33 | + |
轮选987 LX987 | 4 | 30 | 7.34 | 46.25 | 42 | 5 | 70.00 | - |
百农矮抗58 AK58 | 7 | 80 | 6.68 | 46.72 | 46 | 4 | 59.80 | - |
邯6172 H6172 | 6 | 60 | 7.84 | 53.50 | 43 | 6 | 68.40 | - |
LX987//LX987/PI660057-17 | 3 | 20 | 8.47 | 43.76 | 48 | 7 | 86.83 | + |
AK58//AK58/PI660057-20 | 2 | 10 | 9.11 | 43.26 | 45 | 8 | 84.67 | + |
AK58//AK58/PI660057-21 | 3 | 10 | 10.49 | 43.62 | 52 | 7 | 96.83 | + |
AK58//AK58/PI660057-23 | 3 | 20 | 9.33 | 47.26 | 47 | 8 | 99.17 | + |
H6172//H6172/PI660057-25 | 2 | 10 | 9.81 | 48.18 | 48 | 8 | 101.60 | + |
[1] | CHEN X M, KANG Z S. Stripe Rust. 1. Dordrecht: Springer, 2017. |
[2] |
CHEN X M. Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen. Food Security, 2020, 12(4): 239-251.
doi: 10.1007/s12571-020-01016-z |
[3] |
BEDDOW J M, PARDEY P G, CHAI Y, HURLEY T M, KRITICOS D J, BRAUN H J, PARK R F, CUDDY W S, YONOW T. Research investment implications of shifts in the global georgraphy of wheat stripe rust. Nature Plants, 2015, 1(10): 15132.
doi: 10.1038/nplants.2015.132 |
[4] | 马占鸿. 中国小麦条锈病研究与防控. 植物保护学报, 2018, 45(1): 1-6. |
MA Z H. Researches and control of wheat stripe rust in China. Journal of Plant Protection, 2018, 45(1): 1-6. (in Chinese) | |
[5] | 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测. 作物学报, 2021, 47(7): 109-123. |
XI L, WANG Y Q, ZHU W, WANG Y, CHEN G Y, PU Z J, ZHOU Y H, KANG H Y. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province. Acta Agronomica Sinica, 2021, 47(7): 109-123. (in Chinese) | |
[6] |
ZHOU X L, FANG T H, LI K X, HUANG K B, MA C H, ZHANG M, LI X, YANG S, ZREN R S, ZHANG P P. Yield losses associated with different levels of stripe rust resistance of commercial wheat cultivars in China. Phytopathology, 2021, doi: 10.1094/PHYTO-07-21-0286-R.
doi: 10.1094/PHYTO-07-21-0286-R |
[7] |
CHEN X M. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Canadian Journal of Plant Pathology, 2005, 27(3): 314-337.
doi: 10.1080/07060660509507230 |
[8] |
LI J B, DUNDAS I, DONG C M, LI G R, TRETHOWAN R, YANG Z J, HOXHA S, ZHANG P. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theoretical and Applied Genetics, 2020, 133(4): 1095-1107.
doi: 10.1007/s00122-020-03534-y |
[9] |
JAMIL S, SHAHZAD R, AHMAD S, FATIMA R, ZAHID R, ANWAR M, IQBAL M Z, WANG X K. Role of genetics, genomics, and breeding approaches to combat stripe rust of wheat. Frontiers Nutrition, 2020, 7: 580715.
doi: 10.3389/fnut.2020.580715 |
[10] | 周新力, 詹刚明, 黄丽丽, 韩德俊, 康振生. 80份国外春小麦种质资源抗条锈性评价. 中国农业科学, 2015, 48(8): 1518-1526. |
ZHOU X L, ZHAN G M, HUANG L L, HAN D J, KANG Z S. Evaluation of resistance to stripe rust in eighty abroad spring wheat germplasms. Scientia Agricultura Sinica, 2015, 48(8): 1518-1526. (in Chinese) | |
[11] | 穆京妹. 基于连锁分析和关联分析的小麦抗条锈病基因挖掘及Yr64与Yr65聚合选育[D]. 杨凌: 西北农林科技大学, 2019. |
MU J M. Identifation of resistance sources to stripe rust pathogen based on linkage mapping and association analysis and development of wheat lines with pyramided genes Yr64 and Yr65[D]. Yangling: Northwest A&F University, 2019. (in Chinese) | |
[12] |
WANG M N, CHEN X M, XU L S, CHENG P, BOCKELMAN H E. Registration of 70 common spring wheat germplasm lines resistance to stripe rust. Journal of Plant Registrations, 2012, 6(6): 104-110.
doi: 10.3198/jpr2011.05.0261crg |
[13] |
CHEN X M. Review article: High-temperature adult-plant resistance, key for sustainable control of stripe rust. American Journal of Plant Sciences, 2013, 4(3): 608-627.
doi: 10.4236/ajps.2013.43080 |
[14] | 刘博, 刘太国, 章振羽, 贾秋珍, 王保通, 高利, 彭云良, 金社林, 陈万权. 中国小麦条锈菌条中34号的发现及其致病特性. 植物病理学报, 2017, 47(5): 681-687. |
LIU B, LIU T G, ZHANG Z Y, JIA Q Z, WANG B T, GAO L, PENG Y L, JIN S L, CHEN W Q. Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp. triticiin China. Acta Phytopathologica Sinica, 2017, 47(5): 681-687. (in Chinese) | |
[15] | 徐默然, 蔺瑞明, 王凤涛, 冯晶, 徐世昌. 103份小麦品种(系)抗条锈性和遗传多样性评价及基因检测. 中国农业科学, 2020, 53(4): 748-760. |
XU M R, LIN R M, WANG F T, FENG J, XU S C. Evaluation of resistance to stripe rust and genetic diversity and detection of resistance genes in 103 wheat cultivars (lines). Scientia Agricultura Sinica, 2020, 53(4): 748-760. | |
[16] | 韩德俊, 康振生. 中国小麦品种抗条锈病现状及存在问题与对策. 植物保护, 2018, 44(5): 1-12. |
HAN D J, KANG Z S. Current status and future strategy in breeding wheat for resistance to stripe rust in China. Plant Protection, 2018, 44(5): 1-12. (in Chinese) | |
[17] | 李振岐. 我国小麦品种抗条锈性丧失原因及其解决途径. 中国农业科学, 1980, 13(3): 72-77. |
LI Z Q. The variation of wheat variety resistance to stripe rust in China and the way of its solution. Scientia Agricultura Sinica, 1980, 13(3): 72-77. (in Chinese) | |
[18] | 康振生, 王晓杰, 赵杰, 汤春蕾, 黄丽丽. 小麦条锈菌致病性及其变异研究进展. 中国农业科学, 2015, 48(17): 3439-3453. |
KANG Z S, WANG X J, ZHAO J, TANG C L, HUANG L L. Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Scientia Agricultura Sinica, 2015, 48(17): 3439-3453. (in Chinese) | |
[19] |
HAN D J, WANG Q L, CHEN X M, ZENG Q D, WU J H, XUE W B, ZHAN G M, HUANG L L, KANG Z S. Emerging Yr26-virulent races of Puccinia striiformis f. tritici are threatening wheat production in the Sichuan Basin, China. Plant Disease, 2015, 99(6): 754-760.
doi: 10.1094/PDIS-08-14-0865-RE |
[20] |
WANG L C, TANG X R, WU J H, SHEN C, DAI M F, WANG Q L, ZENG Q D, KANG Z S, WU Y F, HAN D J. Stripe rust resistance to a burgeoning Puccinia striiformis f. sp. tritici race CYR34 in current Chinese wheat cultivars for breeding and research. Euphytica, 2019, 215(4): 68.
doi: 10.1007/s10681-019-2383-8 |
[21] | 胡朝月, 王凤涛, 郎晓威, 冯晶, 蔺瑞明, 李俊凯, 姚小波. 小麦抗条锈病基因对中国条锈菌主要流行小种的抗性分析. 中国农业科学, 2022, 55(3): 491-502. |
HU C Y, WANG F T, LANG X W, FENG J, LIN R M, LI J K, YAO X B. Resistance analyses on wheat stripe rust resistance genes to the predominant races of Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica, 2022, 55(3): 491-502. (in Chinese) | |
[22] | 黄亮, 刘太国, 肖星芷, 屈春艳, 刘博, 高利, 罗培高, 陈万权. 中国79个小麦品种(系)抗条锈病评价及基因分子检测. 中国农业科学, 2017, 50(16): 3122-3134. |
HUANG L, LIU T G, XIAO X Z, QU C Y, LIU B, GAO L, LUO P G, CHEN W Q. Evaluation of stripe rust resistance and molecular detection of Yr genes of 79 wheat varieties (lines) in China. Scientia Agricultura Sinica, 2017, 50(16): 3122-3134. | |
[23] | 王树和, 龚凯悦, 初炳瑶, 孙秋玉, 骆勇, 马占鸿. 四川省100个小麦品种(系)抗条锈病基因的分子检测. 植物病理学报, 2018, 48(2): 195-206. |
WANG S H, GONG K Y, CHU B Y, SUN Q Y, LUO Y, MA Z H. Molecular detection of stripe rust resistance gene(s) in 100 wheat cultivars (lines) from Sichuan Province in China. Acta Phytopathologica Sinica, 2018, 48(2): 195-206. (in Chinese) | |
[24] | 孙建鲁, 王吐虹, 冯晶, 蔺瑞明, 王凤涛, 姚强, 郭青云, 徐世昌. 100个小麦品种资源抗条锈性鉴定及重要抗条锈病基因的SSR检测. 植物保护, 2017, 43(2): 64-72. |
SUN J L, WANG T H, FENG J, LIN R M, WANG F T, YAO Q, GUO Q Y, XU S C. Identification of resistance to wheat stripe rust and detection of known resistance genes in 100 wheat cultivars with SSR markers. Plant Protection, 2017, 43(2): 64-72. (in Chinese) | |
[25] | 管方念, 龙黎, 姚方杰, 王昱琦, 江千涛, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 152份黄淮海麦区小麦农家品种抗条锈性评价及重要条锈病抗性基因的分子检测. 中国农业科学, 2020, 53(18): 3629-3637. |
GUAN F N, LONG L, YAO F J, WANG Y Q, JIANG Q T, KANG H Y, JIANG Y F, LI W, DENG M, LI H, CHEN G Y. Evaluation of resistance to stripe rust and molecular detection of important known Yr Gene(s) of 152 Chinese wheat landraces from the Huang-huai-hai. Scientia Agricultura Sinica, 2020, 53(18): 3629-3637. (in Chinese) | |
[26] | 王明玉, 冀凯燕, 冯晶, 蔺瑞明, 王凤涛, 徐世昌. 104个小麦品种抗条锈性及遗传多样性分析. 植物保护学报, 2018, 45(1): 27-36. |
WANG M Y, JI K Y, FENG J, LIN R M, WANG F T, XU S C. Identification of the resistance of 104 wheat varieties to stripe rust and analysis of their genetic diversity. Journal of Plant Protection, 2018, 45(1): 27-36. (in Chinese) | |
[27] |
REN R S, WANG M N, CHEN X M, ZHANG Z J. Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theoretical and Applied Genetics, 2012, 125(5): 847-857.
doi: 10.1007/s00122-012-1877-8 |
[28] |
ZHENG S G, LI Y F, LU L, LIU Z H, ZHANG C H, AO D H, LI L R, ZHANG C Y, LIU R, LUO C P, WU Y, ZHANG L. Evaluating the contribution of Yr genes to stripe rust resistance breeding through marker-assisted detection in wheat. Euphytica, 2017, 213(2): 50.
doi: 10.1007/s10681-016-1828-6 |
[29] |
MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19): 4321-4325.
doi: 10.1093/nar/8.19.4321 |
[30] |
WILKINSON P A, WINFIELD M O, BARKER G L, ALLEN A M, BURRIDGE A, COGHILL J A, EDWARDS K J. CerealsDB 2.0: An integrated resource for plant breeders and scientists. BMC Bioinformatics, 2012, 13(1): 219.
doi: 10.1186/1471-2105-13-219 |
[31] |
LI L, LIU J J, XUE X, LI C C, YANG Z F, LI T. CAPS/dCAPS Designer: A web-based high-throughput dCAPS marker design tool. Science China Life Sciences, 2018, 61(8): 992-995.
doi: 10.1007/s11427-017-9286-y |
[32] | 黄硕. 三个小麦品种(系)条锈病抗性遗传解析以及成株期抗条锈病基因YrXZ9104的精细定位[D]. 杨凌: 西北农林科技大学, 2021. |
HUANG S. Genetic analysis and molecular mapping of stripe rust resistant genes in three wheat varieties and fine mapping for adult-plant resistance gene YrXZ9104 to stripe rust in wheat[D]. Yangling: Northwest A&F University, 2021. (in Chinese) | |
[33] | LINE R F, QAYOUM A. Virulence, aggressiveness, evolution and distribution of races of Puccinia striiformis (the cause of stripe of wheat) in North America, 1968-1987. U.S. Department of Agriculture Technical Bulletin, 1992(1788): 1-54. |
[34] | PETERSON R F, CAMPBELL A B, HANNAH A E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research, 1948, 26(5): 496-500. |
[35] |
MENG L, LI H H, ZHANG L Y, WANG J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations. The Crop Journal, 2015, 3(3): 269-283.
doi: 10.1016/j.cj.2015.01.001 |
[36] |
ZHOU X L, WANG M N, CHEN X M, LU Y, KANG Z S, JING J X. Identification of Yr59 conferring high temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759. Theoretical and Applied Genetics, 2014, 127(4): 935-945.
doi: 10.1007/s00122-014-2269-z |
[37] |
FENG J Y, WANG M N, SEE DR, CHAO S, ZHENG Y L, CHEN X M. Characterization of novel gene Yr79 and four additional quantitative trait loci for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103. Phytopathology, 2018, 108(6): 737-747.
doi: 10.1094/PHYTO-11-17-0375-R |
[38] | 薛文波, 许鑫, 穆京妹, 王琪琳, 吴建辉, 黄丽丽, 康振生, 韩德俊. 中国小麦主栽品种抗条锈性评价与基因分析. 麦类作物学报, 2014, 34(8): 1054-1060. |
XUE W B, XU X, MU J M, WANG Q L, WU J H, HUANG L L, KANG Z S, HAN D J. Evaluation of stripe rust resistance and genes in Chinese elite wheat varieties. Journal of Triticeae Crops, 2014, 34(8): 1054-1060. (in Chinese) | |
[39] | 黄亮, 刘太国, 刘博, 高利, 罗培高, 陈万权. 我国197份小麦核心种质资源对小麦条锈菌新小种CYR34的抗性评价. 植物保护, 2019, 45(258): 153-159. |
HUANG L, LIU T G, LIU B, GAO L, LUO P G, CHEN W Q. Resistance evaluation of 197 Chinese wheat core germplasms to a new stripe rust race, CYR34. Plant Protection, 2019, 45(258): 153-159. (in Chinese) | |
[40] | 杨立军, 曾凡松, 龚双军, 史文琦, 张学江, 汪华, 向礼波, 喻大昭. 68个主推小麦品种的白粉病抗性分析及基因推导. 中国农业科学, 2013, 46(16): 3354-3368. |
YANG L J, ZENG F S, GONG S J, SHI W Q, ZHANG X J, WANG H, XIANG L B, YU D Z. Evaluation of resistance to powdery mildew in 68 Chinese major wheat cultivars and postulation of their resistance genes. Scientia Agricultura Sinica, 2013, 46(16): 3354-3368. (in Chinese) | |
[41] |
JIA J Z, XIE Y L, CHENG J F, KONG C Z, WANG M Y, GAO L F, ZHAO F, GUO J Y, WANG K, LI G W, CUI D Q, HU T Z, ZHAO G Y, WANG D W, RU Z G, ZHANG Y J. Homology-mediated inter-chromosomal interactions in hexaploid wheat lead to specific sub genome territories following polyploidization and introgression. Genome Biology, 2021, 22(1): 26.
doi: 10.1186/s13059-020-02225-7 |
[42] |
YANG Q, FANG T H, LI X, MA C H, YANG S Z, KANG Z S, ZHOU X L. Improving stripe rust resistance and agronomic performance in three elite wheat cultivars using a combination of phenotypic selection and marker detection of Yr48. Crop Protection, 2021, 148(2): 105752.
doi: 10.1016/j.cropro.2021.105752 |
[43] | 王建康. 数量遗传学. 北京: 科学出版社, 2017: 293-297. |
WANG J K. Quantitative Genetics. Beijing: Science Press, 2017: 293-297. (in Chinese) | |
[44] | DREISIGACKER S, SUKUMARAN S, GUZMÁN C, HE X Y, LAN C, BONNETT D, CROSSA J. Molecular marker-based selection tools in spring bread wheat improvement: CIMMYT experience and prospects. Molecular Breeding for Sustainable Crop Improvement, 2016, 11: 421-474. |
[45] |
COBB J N, BISWAS P S, PLATTEN J D. Back to the future: Revisiting MAS as a tool for modern plant breeding. Theoretical and Applied Genetics, 2019, 132(3): 647-667.
doi: 10.1007/s00122-018-3266-4 |
[46] |
SUN C, DONG Z, ZHAO L, REN Y, ZHANG N, CHEN F. The wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnology Journal, 2020, 18(6): 1354-1360.
doi: 10.1111/pbi.13361 |
[47] |
LIU R, LU J, ZHOU M, ZHENG S G, LIU Z H, ZHANG C H, DU M, WANG M X, LI Y F, WU Y, ZHANG L. Developing stripe rust resistant wheat (Triticum aestivum L.) lines with gene pyramiding strategy and marker-assisted selection. Genetic Resources and Crop Evolution, 2020, 67(3): 381-391.
doi: 10.1007/s10722-019-00868-5 |
[48] |
HSU Y C, CHIU C H, YAP R, TSENG Y C, WU Y P. Pyramiding bacterial blight resistance genes in Tainung82 for broad-spectrum resistance using marker-assisted selection. International Journal of Molecular Sciences, 2020, 21(4): 1281.
doi: 10.3390/ijms21041281 |
[49] |
PIETRUSIŃSKA A, CZEMBOR P C, CZEMBOR J H. Lr39+Pm21: A new effective combination of resistance genes for leaf rust and powdery mildew in wheat. Czech Journal of Genetics and Plant Breeding, 2013, 49(3): 109-115.
doi: 10.17221/150/2012-CJGPB |
[50] | 邓其明, 王世全, 郑爱萍, 张红宇, 李平. 利用分子标记辅助育种技术选育高抗白叶枯病恢复系. 中国水稻科学, 2006, 20(2): 153-158. |
DENG Q M, WANG S Q, ZHENG A P, ZHANG H Y, LI P. Breeding restorer lines with high resistance to bacterial blight in hybrid rice by using molecular marker-assisted selection. Chinese Journal of Rice Science, 2006, 20(2): 153-158. (in Chinese) | |
[51] | WANG M N, CHEN X M. Pyramiding stripe rust resistance genes on wheat chromosomes 2B, 4B and 7B. Phytopathology, 2016, S4: 207. |
[52] |
CHEN X M. Integration of cultivar resistance and fungicide application for control of wheat stripe rust. Canadian Journal of Plant Pathology, 2014, 36(3): 311-326.
doi: 10.1080/07060661.2014.924560 |
[53] |
MELANIA F, KIM H K, PETER S S. A review of wheat diseases-a field perspective. Molecular Plant Pathology, 2017, 19(6): 1523-1536.
doi: 10.1111/mpp.12618 |
[54] |
NELSON R, WIESNER-HANKS T, WISSER R, BALINT-KURTI P. Navigating complexity to breed disease-resistant crops. Nature Reviews Genetics, 2018, 19(1): 21-33.
doi: 10.1038/nrg.2017.82 |
[55] |
WANG J, ZHOU L, SHI H, CHERN M, YU H, YI H, HE M, YIN J J, ZHU X B, LI Y, LI W T, LIU J L, WANG J C, CHEN X Q, QING H, WANG Y P, LIU G F, WANG W M, LI P, WU X J, ZHU L H, ZHOU M Z, RONALD P C, LI S G, LI J Y, CHEN X W. A single transcription factor promotes both yield and immunity in rice. Science, 2018, 361(6406): 1026-1028.
doi: 10.1126/science.aat7675 |
[56] |
LORRAIN S, VAILLEAU F, BALAGUÉ C, ROBY D. Lesion mimic mutants: Keys for deciphering cell death and defense pathways in plants? Trends in Plant Science, 2003, 8(6): 263-271.
doi: 10.1016/S1360-1385(03)00108-0 |
[57] |
FUKUOKA S, SAKA N, KOGA H, Ono K, SHIMIZU T, EBANA K, HAYASHI N, TAKAHASHI A, HIROCHIKA H, OKUNO K, YANO M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009, 325(5943): 998-1001.
doi: 10.1126/science.1175550 |
[58] | 邹少奎, 殷贵鸿, 唐建卫, 王俊生, 韩玉林, 李顺成, 李楠楠. 黄淮主推小麦品种主要农艺性状配合力及遗传效应分析. 麦类作物学报, 2017, 36(6): 730-738. |
ZOU S K, YIN G H, TANG J W, WANG J S, HAN Y L, LI S C, LI N N. Combining ability and genetic effect analysis of main agronomic traits of cultivars in Huanghuai wheat region. Journal of Triticeae Crops, 2017, 36(6): 730-738. (in Chinese) | |
[59] | 蒋进, 蒋云, 王淑荣. 四川省近年育成小麦品种农艺性状和品质性状分析. 麦类作物学报, 2019, 39(6): 682-691. |
JIANG J, JIANG Y, WANG S R. Agronomic and quality traits of wheat varieties bred in Sichuan in recent years. Journal of Triticeae Crops, 2019, 39(6): 682-691. (in Chinese) |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[5] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[6] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[7] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[8] | 刘硕,张慧,高志源,许吉利,田汇. 437个小麦品种钾收获指数的变异特征[J]. 中国农业科学, 2022, 55(7): 1284-1300. |
[9] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[10] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[11] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[12] | 蔡苇荻,张羽,刘海燕,郑恒彪,程涛,田永超,朱艳,曹卫星,姚霞. 基于成像高光谱的小麦冠层白粉病早期监测方法[J]. 中国农业科学, 2022, 55(6): 1110-1126. |
[13] | 郭泽西,孙大运,曲俊杰,潘凤英,刘露露,尹玲. 查尔酮合成酶基因在葡萄抗灰霉病和霜霉病中的作用[J]. 中国农业科学, 2022, 55(6): 1139-1148. |
[14] | 宗成, 吴金鑫, 朱九刚, 董志浩, 李君风, 邵涛, 刘秦华. 添加剂对农副产物和小麦秸秆混合青贮发酵品质的影响[J]. 中国农业科学, 2022, 55(5): 1037-1046. |
[15] | 马鸿翔, 王永刚, 高玉姣, 何漪, 姜朋, 吴磊, 张旭. 小麦抗赤霉病育种回顾与展望[J]. 中国农业科学, 2022, 55(5): 837-855. |
|