中国农业科学 ›› 2021, Vol. 54 ›› Issue (23): 5054-5067.doi: 10.3864/j.issn.0578-1752.2021.23.011
周永杰1,2(),谢军红1,2(
),李玲玲1,2,王林林1,2,罗珠珠2,3,王进斌1,2
收稿日期:
2020-11-30
接受日期:
2021-02-02
出版日期:
2021-12-01
发布日期:
2021-12-06
通讯作者:
谢军红
作者简介:
周永杰,E-mail: 基金资助:
ZHOU YongJie1,2(),XIE JunHong1,2(
),LI LingLing1,2,WANG LinLin1,2,LUO ZhuZhu2,3,WANG JinBin1,2
Received:
2020-11-30
Accepted:
2021-02-02
Online:
2021-12-01
Published:
2021-12-06
Contact:
JunHong XIE
摘要:
【目的】明确氮肥减量条件下耕作方式对土壤呼吸、碳排放、作物产量的影响,揭示玉米生长与土壤碳排放的关系。【方法】于2018—2019年依托2012年布设于甘肃农业大学旱作农业综合实验站的耕作方式及氮肥减量长期定位试验。本试验以具有良好集雨抑蒸、增温保墒作用的全膜双垄沟播技术为前提,采取二因素裂区设计,主区为4种耕作方式:翻耕(T1);旋耕(T2);深松耕(T3)和免耕(T4),副区处理为两个施氮水平:氮肥减量(N1:基施氮200 kg·hm-2)和传统施氮(N2:基施200 kg·hm-2+拔节期施100 kg·hm-2)。研究不同处理的玉米生长、土壤呼吸速率特征、碳排放量和土壤有机碳含量的变化,分析碳排放效率 (CEE) 及净生态系统生产力 (NEP)。【结果】(1) 耕作方式及施氮水平显著影响全膜双垄沟播玉米的生长,耕作方式对干物质积累的影响主要在灌浆期和成熟期,免耕处理显著提高了该时期的干物质积累量、生长率和净同化速率,较其他耕作方式籽粒产量提高2%—15%;施氮水平在拔节期—开花期对干物质的影响较大,但同一耕作方式下N1与 N2水平的产量差异不显著。(2)土壤呼吸速率呈先升高后降低的单峰曲线,在大喇叭口期—开花期达到峰值,耕作方式对土壤呼吸、碳排放量及碳排放效率的影响大于施氮水平,免耕处理的土壤呼吸速率较旋耕、翻耕和深松耕分别降低了4.3%、12.9%和24.3%,总碳排放量降低了21.5%、13.4%和31.2%,碳排放效率提高26.5%—55.9%;免耕减施氮肥较其他处理碳排放总量降低489—1 917.5 kg·hm-2,碳排放效率提高了20.1%—56.2%。(3) 所有处理均表现为大气CO2的“汇”,但免耕和减施氮肥表现出更强的碳汇效应,与传统翻耕相比,免耕处理0—5 cm土层有机碳含量增加了11.3%(P<0.05),与传统施氮相比,氮肥减量水平下0—10 cm土层的有机碳含量提高了5.8%(P<0.05)。(4)全膜双垄沟播玉米碳排放效率与干物质积累量、生长率和净同化率呈显著正相关关系,玉米碳排放效率与土壤有机碳含量呈极显著负相关,其原因主要是耕作方式和氮肥减量促进了玉米光合能力,从而捕获更多CO2,进而提高了玉米固碳能力。【结论】在472—491 mm的年降水条件下,免耕结合氮肥减量(基施氮200 kg·hm-2)能提高玉米产量、土壤有机碳含量,降低碳排放总量,提高碳排放效率,是陇中黄土高原全膜双垄沟播玉米一项绿色增产技术,建议在生产中使用。
周永杰,谢军红,李玲玲,王林林,罗珠珠,王进斌. 长期少免耕与氮肥减量对全膜双垄沟播玉米产量及碳排放的调控作用[J]. 中国农业科学, 2021, 54(23): 5054-5067.
ZHOU YongJie,XIE JunHong,LI LingLing,WANG LinLin,LUO ZhuZhu,WANG JinBin. Effects of Long-Term Reduce/Zero Tillage and Nitrogen Fertilizer Reducing on Maize Yield and Soil Carbon Emission Under Fully Plastic Mulched Ridge-Furrow Planting System[J]. Scientia Agricultura Sinica, 2021, 54(23): 5054-5067.
表1
耕作方式及施氮水平对玉米干物质积累的影响"
处理 Treatment | 拔节期 Jointing stage | 开花期 Flowering stage | 灌浆期 Filling stage | 成熟期 Maturity |
---|---|---|---|---|
T1 | 38.79a | 194.43a | 288.7ab | 437.96ab |
T2 | 36.08a | 190.57a | 281.02b | 427.97b |
T3 | 39.39a | 187.36a | 284.00ab | 443.89ab |
T4 | 35.85a | 196.18a | 307.33a | 478.05a |
N1 | 37.92a | 182.67b | 295.18a | 445.64a |
N2 | 37.75a | 201.61a | 285.33a | 448.29a |
T1N1 | 37.17ab | 192.99ab | 302.35a | 439.61ab |
T1N2 | 40.41ab | 195.87ab | 275.05a | 436.31ab |
T2N1 | 38.49ab | 175.48b | 284.33a | 420.28b |
T2N2 | 33.67b | 205.66a | 277.71a | 435.65ab |
T3N1 | 37.67ab | 174.91b | 289.00a | 457.58ab |
T3N2 | 41.10a | 199.81ab | 279.00a | 430.20ab |
T4N1 | 35.86ab | 187.28ab | 305.33a | 465.09ab |
T4N2 | 35.84ab | 205.08a | 309.33a | 491.02a |
T | ns | ns | * | * |
N | ns | * | ns | ns |
N×T | * | * | ns | * |
表2
耕作方式及施氮水平对玉米生长率和净同化率的影响"
处理 Treatment | 出苗期—拔节期 Sowing to jointing stage | 拔节期—开花期 Jointing to flowering stage | 开花期—灌浆期 Flowering to filling stage | 灌浆期—成熟期 Filling to maturity | |||
---|---|---|---|---|---|---|---|
CGR | CGR | NAR | CGR | NAR | CGR | NAR | |
T1 | 0.76a | 4.45a | 7.78a | 4.28a | 5.34a | 3.18a | 4.85a |
T2 | 0.71a | 4.41a | 8.48a | 4.11a | 5.85a | 3.13a | 5.19a |
T3 | 0.77a | 4.23a | 7.59a | 4.39a | 5.87a | 3.4a | 5.48a |
T4 | 0.70a | 4.58a | 8.37a | 5.05a | 6.69a | 3.63a | 5.52a |
N1 | 0.73a | 4.15a | 7.50b | 5.11a | 6.70a | 3.20a | 5.08a |
N2 | 0.74a | 4.68a | 8.61a | 3.81b | 5.17b | 3.47a | 5.45a |
T1N1 | 0.73ab | 4.45ab | 7.35b | 4.97a | 5.94a | 2.92a | 4.54a |
T1N2 | 0.79ab | 4.44ab | 8.20ab | 3.60a | 4.74a | 3.43a | 5.16a |
T2N1 | 0.75ab | 3.91b | 7.43b | 4.95a | 7.01a | 2.89a | 4.71a |
T2N2 | 0.66b | 4.91a | 9.53a | 3.28a | 4.68a | 3.37a | 5.67a |
T3N1 | 0.74ab | 3.92b | 7.24b | 5.19a | 6.85a | 3.59a | 5.64a |
T3N2 | 0.81a | 4.53ab | 7.94ab | 3.60a | 4.90a | 3.22a | 5.33a |
T4N1 | 0.70ab | 4.32ab | 7.97ab | 5.36a | 7.01a | 3.40a | 5.43a |
T4N2 | 0.70ab | 4.84a | 8.77ab | 4.74a | 6.36a | 3.86a | 5.62a |
T | ns | ns | ns | ns | ns | ns | ns |
N | ns | * | * | * | * | ns | ns |
N×T | * | * | * | ns | ns | ns | ns |
表3
耕作方式及施氮水平对0—30 cm土层有机碳含量的影响"
处理 Treatment | 土层 Soil layer | 平均 Mean | ||
---|---|---|---|---|
0-5 cm | 5-10 cm | 10-30 cm | ||
T1 | 9.07b | 9.50a | 8.71a | 8.90a |
T2 | 9.23b | 8.57a | 8.57a | 8.68a |
T3 | 9.03b | 9.19a | 7.82a | 8.25a |
T4 | 10.09a | 8.69a | 8.30a | 8.66a |
N1 | 9.57a | 9.29a | 8.32a | 8.69a |
N2 | 9.14a | 8.69a | 8.38a | 8.56a |
T1N1 | 9.37b | 10.28a | 8.60ab | 9.00a |
T1N2 | 8.78b | 8.73ab | 8.82ab | 8.80a |
T2N1 | 9.00b | 8.55b | 8.19ab | 8.38a |
T2N2 | 9.46b | 8.60b | 8.96a | 8.98a |
T3N1 | 9.19b | 9.19ab | 8.23ab | 8.55a |
T3N2 | 8.87b | 9.19ab | 7.41b | 7.95a |
T4N1 | 10.73a | 9.14ab | 8.28ab | 8.83a |
T4N2 | 9.46b | 8.23b | 8.32ab | 8.50a |
T | * | ns | * | ns |
N | ns | ns | ns | ns |
N×T | * | * | * | ns |
表4
耕作方式及施氮水平对碳排放效率的影响"
处理 Treatment | 籽粒产量 Grain yield (kg·hm-2) | 碳排放总量 Total carbon emission (kg·hm-2) | 碳排放效率 Carbon emission efficiency (kg·kg-1) | |||
---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
T1 | 11386b | 9613b | 6197b | 4947ab | 1.89b | 1.99b |
T2 | 12457a | 9921b | 5815bc | 4396bc | 2.14b | 2.27b |
T3 | 12505a | 10094ab | 7112a | 5588a | 1.76b | 1.82b |
T4 | 12750a | 11036a | 4993c | 3750c | 2.59a | 2.99a |
N1 | 12031b | 10164a | 5921a | 4632a | 2.10a | 2.25a |
N2 | 12517a | 10168a | 6137a | 4709a | 2.09a | 2.28a |
T1N1 | 11345c | 9710b | 5971abc | 4705abcd | 2.00bc | 2.11c |
T1N2 | 11427c | 9515b | 6423ab | 5189abc | 1.78c | 1.87c |
T2N1 | 12320abc | 9882ab | 5671bc | 4298cde | 2.17c | 2.3bc |
T2N2 | 12594ab | 9959ab | 5958abc | 4494bcde | 2.11abc | 2.23bc |
T3N1 | 11811bc | 9780ab | 7024ab | 5551ab | 1.68abc | 1.77c |
T3N2 | 13199a | 10408ab | 7201a | 5625a | 1.84c | 1.87c |
T4N1 | 12651ab | 11283a | 5018c | 3973de | 2.55ab | 2.84ab |
T4N2 | 12849ab | 10790ab | 4967c | 3528e | 2.63a | 3.14a |
T | * | * | ** | ** | ** | ** |
N | * | ns | ns | ns | ns | ns |
N×T | ** | * | * | * | * | * |
表5
耕作方式及施氮水平下玉米农田碳平衡的变化"
处理 Treatment | 总生物量 Total biomass (kg·hm-2) | NPP (kg·hm-2) | Rm (kg·hm-2) | NEP (kg·hm-2) | ||||
---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
T1 | 40301a | 37511a | 18136a | 16880a | 5361b | 4279ab | 12775a | 12601b |
T2 | 38691a | 39487a | 17411a | 17769a | 5030bc | 3803bc | 12381a | 13967ab |
T3 | 38855a | 40643a | 17485a | 18289a | 6152a | 4833a | 11333a | 13456ab |
T4 | 38922a | 41337a | 17515a | 18601a | 4319c | 3244c | 13196a | 15358a |
N1 | 39090a | 39940a | 17591a | 17973a | 5122a | 4007a | 12469a | 13966a |
N2 | 39295a | 39549a | 17683a | 17797a | 5309a | 4073a | 12307a | 13724a |
T1N1 | 40298a | 38183a | 18134a | 17182a | 5165abc | 4070abcd | 12969a | 13112b |
T1N2 | 40305a | 36839a | 18137a | 16578a | 5556ab | 4488abc | 12581a | 12089b |
T2N1 | 38207a | 39801a | 17193a | 17911a | 4906bc | 3718cde | 12288a | 14192ab |
T2N2 | 39175a | 39173a | 17629a | 17628a | 5154abc | 3887bcde | 12475a | 13741ab |
T3N1 | 38692a | 41353a | 17412a | 18609a | 6075ab | 4801ab | 11336a | 13807ab |
T3N2 | 39018a | 39934a | 17558a | 17970a | 6229a | 4866a | 11329a | 13105ab |
T4N1 | 39164a | 40422a | 17624a | 18190a | 4341c | 3437de | 13283a | 14753ab |
T4N2 | 38680a | 42252a | 17406a | 19013a | 4297c | 3052e | 13109a | 15962a |
T | ns | ns | ns | ns | ** | ** | ns | * |
N | ns | ns | ns | ns | ns | ns | ns | ns |
N×T | ns | ns | ns | ns | * | * | ns | * |
[1] |
XU M, SHANG H. Contribution of soil respiration to the global carbon equation. Journal of Plant Physiology, 2016, 203:16-28. doi: 10.1016/j.jplph.2016.08.007.
doi: 10.1016/j.jplph.2016.08.007 |
[2] |
LIU C G, LI F R, ZHOU L M, FENG Q, LI X, PAN C C, WANG L, CHEN J L, LI X G, JIA Y, SIDDIQUE K H M, LI F M. Effects of water management with plastic film in a semi-arid agricultural system on available soil carbon fractions. European Journal of Soil Biology, 2013, 57:9-12. doi: 10.1016/j.ejsobi.2013.03.007.
doi: 10.1016/j.ejsobi.2013.03.007 |
[3] |
WANG Y P, LI X G, FU T T, WANG L, TURNER N C, SIDDIQUE K H M, LI F M. Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agricultural and Forest Meteorology, 2016, 228/229:42-51. doi: 10.1016/j.agrformet.2016.06.016.
doi: 10.1016/j.agrformet.2016.06.016 |
[4] |
XIE J H, WANG L L, LI L L, COULTER J A, CHAI Q, ZHANG R Z, LUO Z Z, CARBERRY P, RAO K P C. Subsoiling increases grain yield, water use efficiency, and economic return of maize under a fully mulched ridge-furrow system in a semiarid environment in China. Soil and Tillage Research, 2020, 199:104584. doi: 10.1016/j.still.2020.104584.
doi: 10.1016/j.still.2020.104584 |
[5] |
LI F M, LI X G, JAVAID M M, ASHRAF M, ZHANG F. Ridge-furrow plastic film mulching farming for sustainable dryland agriculture on the Chinese loess plateau. Agronomy Journal, 2020, 112(5):3284-3294. doi: 10.1002/agj2.20310.
doi: 10.1002/agj2.20310 |
[6] |
于爱忠, 柴强, 殷文, 胡发龙, 樊志龙, 赵财. 玉米农田土壤碳排放及碳平衡对地膜覆盖方式及种植行距的响应. 中国农业科学, 2018, 51(19):3726-3735. doi: 10.3864/j.issn.0578-1752.2018.19.010.
doi: 10.3864/j.issn.0578-1752.2018.19.010 |
YU A Z, CHAI Q, YIN W, HU F L, FAN Z L, ZHAO C. Responses of soil carbon emission and carbon balance of maize field to plastic film mulching pattern and row space. Scientia Agricultura Sinica, 2018, 51(19):3726-3735. doi: 10.3864/j.issn.0578-1752.2018.19.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.19.010 |
|
[7] |
PLAZA-BONILLA D, ARRÚE J L, CANTERO-MARTÍNEZ C, FANLO R, IGLESIAS A, ÁLVARO-FUENTES J. Carbon management in dryland agricultural systems. A review. Agronomy for Sustainable Development, 2015, 35(4):1319-1334. doi: 10.1007/s13593-015-0326-x.
doi: 10.1007/s13593-015-0326-x |
[8] |
贺美, 王迎春, 王立刚, 李成全, 王利民. 不同耕作措施对黑土碳排放和活性碳库的影响. 土壤通报, 2016, 47(5):1195-1202. doi: 10.19336/j.cnki.trtb.2016.05.27.
doi: 10.19336/j.cnki.trtb.2016.05.27 |
HE M, WANG Y C, WANG L G, LI C Q, WANG L M. Effect of different tillage managements on carbon dioxide emission and content of activated carbon in black soil. Chinese Journal of Soil Science, 2016, 47(5):1195-1202. doi: 10.19336/j.cnki.trtb.2016.05.27. (in Chinese)
doi: 10.19336/j.cnki.trtb.2016.05.27 |
|
[9] |
张前兵, 杨玲, 张旺锋, 罗宏海, 张亚黎, 王进. 农艺措施对干旱区棉田土壤有机碳及微生物量碳含量的影响. 中国农业科学, 2014, 47(22):4463-4474. doi: 10.3864/j.issn.0578-1752.2014.22.012.
doi: 10.3864/j.issn.0578-1752.2014.22.012 |
ZHANG Q B, YANG L, ZHANG W F, LUO H H, ZHANG Y L, WANG J. Effects of agronomic measures on soil organic carbon and microbial carbon content in cotton in arid region. Scientia Agricultura Sinica, 2014, 47(22):4463-4474. doi: 10.3864/j.issn.0578-1752.2014.22.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.22.012 |
|
[10] |
STRUCK I J A, TAUBE F, HOFFMANN M, KLUß C, HERRMANN A, LOGES R, REINSCH T. Full greenhouse gas balance of silage maize cultivation following grassland: Are no-tillage practices favourable under highly productive soil conditions? Soil and Tillage Research, 2020, 200:104615. doi: 10.1016/j.still.2020.104615.
doi: 10.1016/j.still.2020.104615 |
[11] |
LAL R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677):1623-1627. doi: 10.1126/science.1097396.
doi: 10.1126/science.1097396 |
[12] |
WILSON H M, AL-KAISI M M. Crop rotation and nitrogen fertilization effect on soil CO2 emissions in central Iowa. Applied Soil Ecology, 2008, 39(3):264-270. doi: 10.1016/j.apsoil.2007.12.013.
doi: 10.1016/j.apsoil.2007.12.013 |
[13] |
XIAO H B, SHI Z H, LI Z W, WANG L, CHEN J, WANG J. Responses of soil respiration and its temperature sensitivity to nitrogen addition: A meta-analysis in China. Applied Soil Ecology, 2020, 150:103484. doi: 10.1016/j.apsoil.2019.103484.
doi: 10.1016/j.apsoil.2019.103484 |
[14] |
YONG P, SONG S Y, LI Z Y, LI S, CHEN G T, HU H L, XIE J L, CHEN G, LIU L, TU L H. Influences of nitrogen addition and aboveground litter-input manipulations on soil respiration and biochemical properties in a subtropical forest. Soil Biology and Biochemistry, 2020, 142:107694. Doi: 10.1016/j.soilbio.2019.107694.
doi: 10.1016/j.soilbio.2019.107694 |
[15] |
樊志龙, 赵财, 刘畅, 于爱忠, 殷文, 胡发龙, 柴强. 一膜两年用少耕轮作对水氮减投小麦产量形成的促进效应. 中国农业科学, 2018, 51(19):3651-3662. doi: 10.3864/j.issn.0578-1752.2018.19.003.
doi: 10.3864/j.issn.0578-1752.2018.19.003 |
FAN Z L, ZHAO C, LIU C, YU A Z, YIN W, HU F L, CHAI Q. Enhanced effect of two years plastic film mulching with reduced tillage on grain yield formation of wheat rotation under reduced irrigation and N application. Scientia Agricultura Sinica, 2018, 51(19):3651-3662. doi: 10.3864/j.issn.0578-1752.2018.19.003. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.19.003 |
|
[16] |
张庆忠, 吴文良, 王明新, 周中仁, 陈淑峰. 秸秆还田和施氮对农田土壤呼吸的影响. 生态学报, 2005, 25(11):2883-2887. doi: 10.3321/j.issn:1000-0933.2005.11.013.
doi: 10.3321/j.issn:1000-0933.2005.11.013 |
ZHANG Q Z, WU W L, WANG M X, ZHOU Z R, CHEN S F. The effects of crop residue amendment and N rate on soil respiration. Acta Ecologica Sinica, 2005, 25(11):2883-2887. doi: 10.3321/j.issn:1000-0933.2005.11.013. (in Chinese)
doi: 10.3321/j.issn:1000-0933.2005.11.013 |
|
[17] |
NAN W G, YUE S C, HUANG H Z, LI S Q, SHEN Y F. Effects of plastic film mulching on soil greenhouse gases (CO2, CH4 and N2O) concentration within soil profiles in maize fields on the Loess Plateau, China. Journal of Integrative Agriculture, 2016, 15(2):451-464. doi: 10.1016/S2095-3119(15)61106-6.
doi: 10.1016/S2095-3119(15)61106-6 |
[18] | 曹卫星. 作物栽培学总论. 2版. 北京: 科学出版社, 2011. |
CAO W X. General Introduction of Crop Cultivation. 2nd ed. Beijing: Science Press, 2011. (in Chinese) | |
[19] |
胡发龙, 柴强, 甘延太, 殷文, 赵财, 冯福学. 少免耕及秸秆还田小麦间作玉米的碳排放与水分利用特征. 中国农业科学, 2016, 49(1):120-131. doi: 10.3864/j.issn.0578-1752.2016.01.011.
doi: 10.3864/j.issn.0578-1752.2016.01.011 |
HU F L, CHAI Q, GAN Y T, YIN W, ZHAO C, FENG F X. Characteristics of soil carbon emission and water utilization in wheat/maize intercropping with minimal/zero tillage and straw retention. Scientia Agricultura Sinica, 2016, 49(1):120-131. doi: 10.3864/j.issn.0578-1752.2016.01.011. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.01.011 |
|
[20] |
WOODWELL G M, WHITTAKER R H, REINERS W A, LIKENS G E, DELWICHE C C, BOTKIN D B. The biota and the world carbon budget. Science, 1978, 199(4325):141-146. doi: 10.1126/science.199.4325.141.
doi: 10.1126/science.199.4325.141 |
[21] |
KUZYAKOV Y. Separating microbial respiration of exudates from root respiration in non-sterile soils: A comparison of four methods. Soil Biology and Biochemistry, 2002, 34(11):1621-1631. doi: 10.1016/S0038-0717(02)00146-3.
doi: 10.1016/S0038-0717(02)00146-3 |
[22] |
CAI Z C, QIN S W. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China. Geoderma, 2006, 136(3/4):708-715. doi: 10.1016/j.geoderma.2006.05.008.
doi: 10.1016/j.geoderma.2006.05.008 |
[23] |
李向岭, 赵明, 李从锋, 葛均筑, 侯海鹏, 李琦, 侯立白. 播期和密度对玉米干物质积累动态的影响及其模型的建立. 作物学报, 2010, 36(12):2143-2153. doi: 10.3724/SP.J.1006.2010.02143.
doi: 10.3724/SP.J.1006.2010.02143 |
LI X L, ZHAO M, LI C F, GE J Z, HOU H P, LI Q, HOU L B. Effect of sowing-date and planting density on dry matter accumulation dynamic and establishment of its simulated model in maize. Acta Agronomica Sinica, 2010, 36(12):2143-2153. doi: 10.3724/SP.J.1006.2010.02143. (in Chinese)
doi: 10.3724/SP.J.1006.2010.02143 |
|
[24] |
谢军红, 张仁陟, 李玲玲, 罗珠珠, 蔡立群, 柴强. 耕作方法对黄土高原旱作玉米产量和土壤水温特性的影响. 中国生态农业学报, 2015, 23(11):1384-1393. doi: 10.13930/j.cnki.cjea.150021.
doi: 10.13930/j.cnki.cjea.150021 |
XIE J H, ZHANG R Z, LI L L, LUO Z Z, CAI L Q, CHAI Q. Effect of different tillage practice on rain-fed maize yield and soil water/temperature characteristics in the Loess Plateau. Chinese Journal of Eco-Agriculture, 2015, 23(11):1384-1393. doi: 10.13930/j.cnki.cjea.150021. (in Chinese)
doi: 10.13930/j.cnki.cjea.150021 |
|
[25] |
UWAMUNGU J Y, NARTEY O D, UWIMPAYE F, DONG W X, HU C S. Evaluating biochar impact on topramezone adsorption behavior on soil under no-tillage and rotary tillage treatments: Isotherms and kinetics. International Journal of Environmental Research and Public Health, 2019, 16(24):5034. doi: 10.3390/ijerph16245034.
doi: 10.3390/ijerph16245034 |
[26] |
赵亚丽, 刘卫玲, 程思贤, 周亚男, 周金龙, 王秀玲, 张谋彪, 王群, 李潮海. 深松(耕)方式对砂姜黑土耕层特性、作物产量和水分利用效率的影响. 中国农业科学, 2018, 51(13):2489-2503. doi: 10.3864/j.issn.0578-1752.2018.13.005.
doi: 10.3864/j.issn.0578-1752.2018.13.005 |
ZHAO Y L, LIU W L, CHENG S X, ZHOU Y N, ZHOU J L, WANG X L, ZHANG M B, WANG Q, LI C H. Effects of pattern of deep tillage on topsoil features, yield and water use efficiency in lime concretion black soil. Scientia Agricultura Sinica, 2018, 51(13):2489-2503. doi: 10.3864/j.issn.0578-1752.2018.13.005. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.13.005 |
|
[27] |
颉健辉, 李玲玲, 谢军红, 彭正凯, 邓超超, 沈吉成, 王进斌, Eunice Essel. 氮肥运筹对旱作覆膜玉米产量及固碳减排效应研究. 中国土壤与肥料, 2019(6):134-141. doi: 10.11838/sfsc.1673-6257.19002.
doi: 10.11838/sfsc.1673-6257.19002 |
XIE J H, LI L L, XIE J H, PENG Z K, DENG C C, SHEN J C, WANG J B, ESSEL E. Effects of nitrogen fertilizer management on yield, carbon sequestration and emission reduction of dryland mulched maize. Soils and Fertilizers Sciences in China, 2019(6):134-141. doi: 10.11838/sfsc.1673-6257.19002. (in Chinese)
doi: 10.11838/sfsc.1673-6257.19002 |
|
[28] |
周宝元, 孙雪芳, 丁在松, 马玮, 赵明. 土壤耕作和施肥方式对夏玉米干物质积累与产量的影响. 中国农业科学, 2017, 50(11):2129-2140. doi: 10.3864/j.issn.0578-1752.2017.11.018.
doi: 10.3864/j.issn.0578-1752.2017.11.018 |
ZHOU B Y, SUN X F, DING Z S, MA W, ZHAO M. Effect of tillage practice and fertilization on dry matter accumulation and grain yield of summer maize (Zea mays L.). Scientia Agricultura Sinica, 2017, 50(11):2129-2140. doi: 10.3864/j.issn.0578-1752.2017.11.018. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.11.018 |
|
[29] |
邵国庆, 李增嘉, 宁堂原, 张民, 江晓东, 王芸, 赵建波, 吕美蓉, 赵杰. 不同水分条件下常规尿素和控释尿素对玉米根冠生长及产量的影响. 作物学报, 2009, 35(1):118-123. doi: 10.3724/SP.J.1006.2009.00118.
doi: 10.3724/SP.J.1006.2009.00118 |
SHAO G Q, LI Z J, NING T Y, ZHANG M, JIANG X D, WANG Y, ZHAO J B, (LÜ/LV/LU/LYU) M R, ZHAO J. Effects of normal urea and release-controlled urea on root and shoot growth and yield of maize in different water conditions. Acta Agronomica Sinica, 2009, 35(1):118-123. doi: 10.3724/SP.J.1006.2009.00118. (in Chinese)
doi: 10.3724/SP.J.1006.2009.00118 |
|
[30] |
HAN G X, ZHOU G S, XU Z Z, YANG Y, LIU J L, SHI K Q. Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.) agricultural ecosystem. Plant and Soil, 2007, 291(1):15-26. doi: 10.1007/s11104-006-9170-8.
doi: 10.1007/s11104-006-9170-8 |
[31] | 张俊清, 朱平, 张夫道. 有机肥和化肥配施对黑土有机氮形态组成及分布的影响. 植物营养与肥料学报, 2004, 10(3):245-249. |
ZHANG J Q, ZHU P, ZHANG F D. Effect of organic manure and chemical fertilizer combined application on the form and distribution of organic nitrogen of black soil. Plant Nutrition and Fertilizer Science, 2004, 10(3):245-249. (in Chinese) | |
[32] |
郑洪兵, 刘武仁, 罗洋, 李瑞平, 李伟堂, 王浩, 郑金玉. 耕作方式对农田土壤水分变化特征及水分利用效率的影响. 水土保持学报, 2018, 32(3):264-270. doi: 10.13870/j.cnki.stbcxb.2018.03.040.
doi: 10.13870/j.cnki.stbcxb.2018.03.040 |
ZHENG H B, LIU W R, LUO Y, LI R P, LI W T, WANG H, ZHENG J Y. Effect of different tillage methods on soil water content and water use efficiency in cropland. Journal of Soil and Water Conservation, 2018, 32(3):264-270. doi: 10.13870/j.cnki.stbcxb.2018.03.040. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2018.03.040 |
|
[33] |
OHWAKI A. Ground arthropod communities in paddy fields during the dry period: Comparison between different farming methods. Journal of Asia-Pacific Entomology, 2015, 18(3):413-419. doi: 10.1016/j.aspen.2015.05.001.
doi: 10.1016/j.aspen.2015.05.001 |
[34] | PAUSTIAN K, SIX J, ELLIOTT E T, HUNT H W. Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry, 2000, 48(1):147-163. doi: 10.1023/A:1006271331703. |
[35] | LIU Y, YANG L, GU D D, WU W, WEN X X, LIAO Y C. Influence of tillage practice on soil CO2 emission rate and soil characteristics in a dryland wheat field. International Journal of Agriculture & Biology, 2013, 15(4):680-686. |
[36] |
WANG H, WANG S L, YU Q, ZHANG Y J, WANG R, LI J, WANG X L. No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue-returned farming system. Journal of Environmental Management, 2020, 261:110261. doi: 10.1016/j.jenvman.2020.110261.
doi: 10.1016/j.jenvman.2020.110261 |
[37] |
王立刚, 邱建军, 马永良, 王迎春. 应用DNDC模型分析施肥与翻耕方式对土壤有机碳含量的长期影响. 中国农业大学学报, 2004, 9(6):15-19. doi: 10.3321/j.issn:1007-4333.2004.06.004.
doi: 10.3321/j.issn:1007-4333.2004.06.004 |
WANG L G, QIU J J, MA Y L, WANG Y C. Apply DNDC model to analysis long-term effect of soil organic carbon content under different fertilization and plough mode. Journal of China Agricultural University, 2004, 9(6):15-19. doi: 10.3321/j.issn:1007-4333.2004.06.004. (in Chinese)
doi: 10.3321/j.issn:1007-4333.2004.06.004 |
|
[38] |
KHAN S A, MULVANEY R L, ELLSWORTH T R, BOAST C W. The myth of nitrogen fertilization for soil carbon sequestration. Journal of Environmental Quality, 2007, 36(6):1821-1832. doi: 10.2134/jeq2007.0099.
doi: 10.2134/jeq2007.0099 |
[39] |
PAMPOLINO M F, LAURELES E V, GINES H C, BURESH R J. Soil carbon and nitrogen changes in long-term continuous lowland rice cropping. Soil Science Society of America Journal, 2008, 72(3):798-807. doi: 10.2136/sssaj2006.0334.
doi: 10.2136/sssaj2006.0334 |
[40] |
LUO Q P, GONG J R, YANG L L, LI X B, PAN Y, LIU M, ZHAI Z W, BAOYIN T T. Impacts of nitrogen addition on the carbon balance in a temperate semiarid grassland ecosystem. Biology and Fertility of Soils, 2017, 53(8):911-927. doi: 10.1007/s00374-017-1233-x.
doi: 10.1007/s00374-017-1233-x |
[41] |
张晓丽, 孔凡磊, 刘晓林, 胡立峰, 李玉义. 生物质改良剂对川西北地区高寒草地沙化土壤有机碳特征的影响. 中国生态农业学报(中英文), 2019, 27(11):1732-1743. doi: 10.13930/j.cnki.cjea.190248.
doi: 10.13930/j.cnki.cjea.190248 |
ZHANG X L, KONG F L, LIU X L, HU L F, LI Y Y. Effects of different biomass amendments on soil organic carbon characteristics in alpine desertification grassland of Northwest Sichuan. Chinese Journal of Eco-Agriculture, 2019, 27(11):1732-1743. doi: 10.13930/j.cnki.cjea.190248. (in Chinese)
doi: 10.13930/j.cnki.cjea.190248 |
|
[42] |
李银坤, 陈敏鹏, 夏旭, 梅旭荣, 李昊儒, 郝卫平. 不同氮水平下夏玉米农田土壤呼吸动态变化及碳平衡研究. 生态环境学报, 2013, 22(1):18-24. doi: 10.16258/j.cnki.1674-5906.2013.01.013.
doi: 10.16258/j.cnki.1674-5906.2013.01.013 |
LI Y K, CHEN M P, XIA X, MEI X R, LI H R, HAO W P. Dynamics of soil respiration and carbon balance of summer-maize field under different nitrogen addition. Ecology and Environmental Sciences, 2013, 22(1):18-24. doi: 10.16258/j.cnki.1674-5906.2013.01.013. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2013.01.013 |
[1] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 柴海燕,贾娇,白雪,孟玲敏,张伟,金嵘,吴宏斌,苏前富. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性[J]. 中国农业科学, 2023, 56(1): 64-78. |
[5] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[6] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[7] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[8] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[9] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[10] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[11] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[12] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[13] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[14] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[15] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
|