中国农业科学 ›› 2020, Vol. 53 ›› Issue (15): 3036-3047.doi: 10.3864/j.issn.0578-1752.2020.15.005
曹玉军1(),姚凡云1,王丹2,吕艳杰1,刘小丹1,王立春1,王永军1,2(
),李从锋3(
)
收稿日期:
2020-05-09
接受日期:
2020-06-15
出版日期:
2020-08-01
发布日期:
2020-08-06
通讯作者:
王永军,李从锋
作者简介:
曹玉军,E-mail: 基金资助:
CAO YuJun1(),YAO FanYun1,WANG Dan2,LÜ YanJie1,LIU XiaoDan1,WANG LiChun1,WANG YongJun1,2(
),LI CongFeng3(
)
Received:
2020-05-09
Accepted:
2020-06-15
Online:
2020-08-01
Published:
2020-08-06
Contact:
YongJun WANG,CongFeng LI
摘要:
【目的】探明不同产量水平模式中增(减)技术因子对玉米产量、养分效率的影响并明确其优先序,以期为不同生产水平玉米产量及氮素效率缩差增效提供理论依据。【方法】通过调研农户、高产高效和超高产3个产量水平的生产模式,确定了种植密度、耕作方式、氮素管理、品种是不同生产模式玉米产量与氮素效率提升的主要技术因子,在此基础上设置了超高产(SH)、高产高效(HH)和农户(FP)3个不同产量水平的综合管理技术模式,针对不同模式中的技术因子设计了裂区试验,以耕作方式为主区、品种为副区,氮肥管理为副副区、密度为副副副区,分析增(减)技术因子对不同生产模式玉米产量及氮素效率的技术贡献率。【结果】FP模式中技术因子对产量贡献率的大小依次为氮素管理、种植密度、土壤耕作、品种,贡献率分别为9.9%、6.0%、4.4%和2.5%;HH模式中栽培措施对产量贡献率的大小依次为种植密度、氮素管理、土壤耕作、品种,贡献率分别为7.7%、5.2%、4.5%和3.5%;SH模式中栽培措施对产量贡献率大小依次为种植密度、土壤耕作、氮素管理、品种,贡献率分别为8.9%、7.3%、6.5%和4.3%。而3种模式中,栽培技术因子对氮素效率贡献率从高到低依次均为氮素管理、种植密度、土壤耕作、品种。其中,FP模式的氮素管理、种植密度、土壤耕作、品种对氮素效率的贡献率分别为30.5%、6.0%、4.4%和2.5%,HH模式分别为19.7%、7.7%、4.7%和4.5%,SH模式分别为25.4%、8.3%、6.5%和4.5%。【结论】技术因子对产量的贡献在不同模式中的优先序不同,不同管理水平下产量差由多因素共同作用形成,技术因子间具有协同效应。当前农户水平下氮素管理方式对产量的贡献率居首位,高产水平下种植密度和土壤耕作对产量贡献较大,而不同产量水平下氮素效率差异主要取决于氮肥管理方式。
曹玉军,姚凡云,王丹,吕艳杰,刘小丹,王立春,王永军,李从锋. 不同栽培技术因子对雨养春玉米产量与氮素效率差异的影响[J]. 中国农业科学, 2020, 53(15): 3036-3047.
CAO YuJun,YAO FanYun,WANG Dan,LÜ YanJie,LIU XiaoDan,WANG LiChun,WANG YongJun,LI CongFeng. Effects of Different Agronomy Factors on Yield Gap and Nitrogen Efficiency Gap of Spring Maize Under Rain-Fed Conditions[J]. Scientia Agricultura Sinica, 2020, 53(15): 3036-3047.
表1
不同模式的种植密度、耕作方式与肥料运筹"
技术模式 Technique mode | 种植密度 Planting density (×104 plants/hm2) | 耕作方式 Tillage method | 肥料 Fertilizer | 总用量 Total amount (kg·hm-2) | 肥料施用时期和施用比例 Fertilizer application period and application ratio | |||
---|---|---|---|---|---|---|---|---|
播前 Before sowing | 拔节 Jointing stage | 大喇叭口期 Bell stage | 吐丝期 Silking stage | |||||
FP | 6.0 | 浅旋15 cm Shallow rotary (15 cm) | 氮肥N | 270 | 100% | – | – | – |
磷肥P2O5 | 120 | 100% | – | – | – | |||
钾肥K2O | 120 | 100% | – | – | – | |||
HH | 7.5 | 深松/深翻 Deep tillage | 氮肥N | 225 | 20% | 30% | 30% | 30% |
磷肥P2O5 | 120 | 100% | – | – | – | |||
钾肥K2O | 120 | 100% | – | – | – | |||
有机肥 Organic fertilizer | 15000 | 100% | – | – | – | |||
SH | 9.0 | 深松/深翻 Deep tillage | 氮肥N | 360 | 40% | 30% | – | 30% |
磷肥P2O5 | 120 | 100% | – | – | – | |||
钾肥K2O | 120 | 100% | – | – | – | |||
有机肥 Organic fertilizer | 15000 | 100% | – | – | – |
表2
增(减)技术因子形成的产量差及技术因子对产量的贡献率"
技术模式 Technical mode | 技术因子 Technique factor | 2017 | 2018 | 平均Average | ||||
---|---|---|---|---|---|---|---|---|
产量差 Yield gap (kg·hm-2) | 贡献率Contribution rate (%) | 产量差 Yield gap (kg·hm-2) | 贡献率 Contribution rate (%) | 产量差 Yield gap (kg·hm-2) | 贡献率 Contribution rate (%) | |||
FP | 与FP比较 Compared with the FP | |||||||
+土壤耕作 +Tillage | 361.9 | 3.5 | 523.6 | 5.1 | 442.8 | 4.4 | ||
+氮肥管理 +N management | 1050.5 | 10.3 | 960 | 9.5 | 1005.3 | 9.9 | ||
+密度 +Density | 770.8 | 7.6 | 440.9 | 4.4 | 609.9 | 6.0 | ||
+品种 +Variety | 294.6 | 2.9 | 205.7 | 2.1 | 250.2 | 2.5 | ||
HH | 与HH比较 Compared with the FP | |||||||
-土壤耕作 -Tillage | -594.0 | -4.7 | -678.1 | -5.7 | -571.1 | -5.2 | ||
-氮肥管理 -N management | -556.2 | -4.4 | -513.8 | -4.3 | -510.0 | -4.4 | ||
-密度 -Density | -1209.3 | -9.6 | -1279.1 | -10.8 | -1244.2 | -10.2 | ||
++密度 ++Density | 760.6 | 6.0 | 483.8 | 4.1 | 622.2 | 5.1 | ||
+品种 +Variety | 434.5 | 3.5 | 599.8 | 5.1 | 542.2 | 4.3 | ||
SH | 与SH比较 Compared with the SH | |||||||
-土壤耕作 -Tillage | -498.5 | -3.6 | -1182.7 | -9.1 | -840.6 | -6.5 | ||
-氮肥管理 -N management | -1114.1 | -8.0 | -833.1 | -6.4 | -973.6 | -7.3 | ||
-密度 -Density | -1507.0 | -10.9 | -908.3 | -6.9 | -1207.7 | -8.9 | ||
+品种 +Variety | 557.4 | 4.0 | 799.2 | 6.2 | 678.3 | 5.1 |
表3
增(减)技术因子形成的养分效率差及技术因子对氮素效率的贡献率"
技术模式 Technical mode | 技术因子 Measure factor | 2017 | 2018 | 平均 Average | |||
---|---|---|---|---|---|---|---|
效率差 Efficiency gap (kg·kg-1) | 贡献率 Contribution rate (%) | 效率差 Efficiency gap (kg·kg-1) | 贡献率 Contribution rate (%) | 效率差 Efficiency gap (kg·kg-1) | 贡献率 Contribution rate (%) | ||
FP | 与FP比较 Compared with the FP | ||||||
+土壤耕作 +Tillage | 1.3 | 3.5 | 1.9 | 5.1 | 1.64 | 4.4 | |
+氮肥管理 +N management | 12.2 | 31.2 | 11.8 | 29.8 | 12.0 | 30.5 | |
+密度 +Density | 2.8 | 7.6 | 1.6 | 4.5 | 2.2 | 6.0 | |
+品种 +Variety | 1.1 | 2.9 | 0.8 | 2.1 | 0.9 | 2.5 | |
HH | 与HH比较 Compared with the HH | ||||||
-土壤耕作 -Tillage | -2.6 | -4.7 | -3.0 | -5.7 | -2.8 | -5.2 | |
-氮肥管理 -N management | -10.7 | -19.0 | -10.7 | -20.3 | -10.7 | -19.7 | |
-密度 -Density | -5.4 | -9.6 | -5.7 | -10.8 | -5.5 | -10.2 | |
++密度 ++Density | 3.6 | 6.0 | 2.2 | 4.1 | 2.9 | 5.2 | |
+品种 +Variety | 1.9 | 3.5 | 2.8 | 5.1 | 2.4 | 4.3 | |
SH | 与SH比较 Compared with the SH | ||||||
-土壤耕作 -Tillage | -1.4 | -3.6 | -3.3 | -9.1 | -2.3 | -6.4 | |
-氮肥管理 -N management | 8.7 | 23.5 | 8.9 | 27.3 | 8.8 | 25.4 | |
-密度 -Density | -4.2 | -10.9 | -2.5 | -6.9 | -3.4 | -8.9 | |
+品种 +Variety | 1.5 | 4.0 | 2.2 | 6.2 | 1.9 | 5.1 |
[1] |
ROSSINI M A, MADDONNI G A, OTEGUI M E. Inter-plant competition for resources in maize crops grown under contrasting nitrogen supply and density: Variability in plant and ear growth. Field Crops Research, 2011,121:373-380.
doi: 10.1016/j.fcr.2011.01.003 |
[2] | MENG Q F, HOU P, WU L, CHEN X P, CUI Z L, ZHANG F S. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Research, 2013,143:91-97. |
[3] | 李雅剑, 王志刚, 高聚林, 孙继颖, 于晓芳, 胡树平, 余少波, 梁红伟, 裴宽. 基于密度联网试验和 Hybrid-Maize 模型的内蒙古玉米产量差和生产潜力评估. 中国生态农业学报, 2016,24(7):935-943. |
LI Y J, WANG Z G, GAO J L, SUN J Y, YU X F, HU S P, YU S B, LIAG H W, PEI K. Understanding yield gap and production potential based on networked variety-density tests and Hybrid-Maize model in maize production areas of Inner Mongolia. Chinese Journal of Eco-Agriculture, 2016,24(7):935-943. (in Chinese) | |
[4] | 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017,50(11):1941-1959. |
LI S K, ZHAO J R, DONG S T, ZHAO M, LI C H, CUI Y H, LIU Y H, GAO J L, XUE J Q, WANG L C, WANG P, LU W P, WANG J H, YANG Q F, WANG Z M. Advances and prospects of maize cultivation in China. Scientia Agricultura Sinica, 2017,50(11):1941-1959. (in Chinese) | |
[5] | 王洪章, 刘鹏, 董树亭, 张吉旺, 赵斌, 任佰朝. 夏玉米产量与光温生产效率差异分析—以山东省为例. 中国农业科学, 2019,52(8):1355-1367. |
WANG H Z, LIU P, DONG S T, ZHANG J W, ZHAO B, REN B Z. Analysis of gap between yield and radiation production efficiency and temperature production efficiency in summer maize: Taking Shandong province as an example. Scientia Agricultura Sinica, 2019,52(8):1355-1367. (in Chinese) | |
[6] | 王立春, 王永军, 边少锋, 蔡红光, 任军, 郑金玉, 朱平. 吉林省玉米高产高效绿色发展的理论与实践. 吉林农业大学学报, 2018,40(4):383-392. |
WANG L C, WANG Y J, BIAN S F, CAI H G, REN J, ZHENG J Y, ZHU P. Theory and practice for high yield, high efficiency and green development of maize in Jilin province. Journal of Jilin Agricultural University, 2018,40(4):383-392. (in Chinese) | |
[7] | 陈广锋. 华北平原小农户小麦/玉米高产高效限制因素及优化体系设计研究[D]. 北京: 中国农业大学, 2018. |
CHEN G F. Limiting factors analysis and designing for high yield and high nutrient use efficiency for winter wheat and summer maize in smaller farmers fields in the North China Plain[D]. Beijing: China Agriculture University, 2018. (in Chinese) | |
[8] |
ZHU Z L, CHEN D L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutrient Cycling in Agroecosystems, 2002,63(2/3):117-127.
doi: 10.1023/A:1021107026067 |
[9] |
FANG Q X, YU Q, WANG E L, CHEN Y H, ZHANG G L, WANG J, LI L H. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by 12 fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain. Plant Soil, 2006,284:335-350.
doi: 10.1007/s11104-006-0055-7 |
[10] | 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45(5):915-924. |
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Current status and improvement of fertilizer utilization rate of main grain crops in China. Acta Pedologica Sinica, 2008,45(5):915-924. (in Chinese) | |
[11] | CHEN X P, CUI Z L, VITOUSEK P M, CASSMAN K G, MATSON P A, BAI J S, MENG Q F, HOU P, YUE S C, ZHANG F S. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(16):6399-6404. |
[12] | 刘保花, 陈新平, 崔振岭, 孟庆锋, 赵明. 三大粮食作物产量潜力与产量差研究进展. 中国生态农业学报, 2015,23(5):5-14. |
LIU B H, CHEN X P, CUI Z L, MENG Q F, ZHAO M. Research advance on yield potential and yield gaps for three major cereal crops. Chinese Journal of Eco-Agriculture, 2015,23(5):5-14. (in Chinese) | |
[13] |
CHEN G F, CAO H Z, LIANG J, MA W Q, GUO L F, ZHANG S H, JIANG R F, ZHANG H Y, KEITH W T, ZHANG F S. Affecting nitrogen use efficiency and grain yield of summer maize on smallholder farms in the North China Plain. Sustainability, 2018,10(2):363.
doi: 10.3390/su10020363 |
[14] |
王洪章, 刘鹏, 贾绪存, 李静, 任昊, 董树亭, 张吉旺, 赵斌. 不同栽培管理条件下夏玉米产量与肥料利用效率的差异解析. 作物学报, 2019,45(10):1544-1553.
doi: 10.3724/SP.J.1006.2019.93002 |
WANG H Z, LIU P, JIA X C, LI J, REN H, DONG S T, ZHANG J W, ZHAO B. Analysis of differences in summer maize yield and fertilizer use efficiency under different cultivation managements. Acta Agronomica Sinica, 2019,45(10):1544-1553. (in Chinese)
doi: 10.3724/SP.J.1006.2019.93002 |
|
[15] | 胡瑞法, ERIKA C H M, 张世煌, 石晓华. 中国玉米研究的优先序. 中国科学基金, 2003,17(5):273-276. |
HU R F, ERIKA C H M, ZHANG S H SHI X H. Prioritization for maize research in China. Bulletin of National Natural Science Foundation of China, 2003,17(5):273-276. (in Chinese) | |
[16] | 王崇桃, 李少昆. 玉米生产限制因素评估与技术优先序. 中国农业科学, 2010,43(6):1136-1146. |
WANG C T, LI S K. Assessment of limiting factors and techniques prioritization for maize production in China. Scientia Agricultura Sinica, 2010,43(6):1136-1146. (in Chinese) | |
[17] | 闫孝贡, 刘剑钊, 张洪喜, 袁静超, 蔡红光, 任军. 吉林省春玉米大面积增产与资源增效限制因素评估. 吉林农业科学, 2012,37(6):9-11, 24. |
YAN X G, LIU J Z, ZHANG H X, YUAN J C, CAI H G, REN J. Assessment of limiting factors on high yield of large-scale spring maize production and high efficiency of resource in Jilin province. Journal of Jilin Agricultural Sciences, 2012, 37(6):9-11, 24. (in Chinese) | |
[18] |
LIU Z, GAO J, GAO F, DONG S T, LIU P, ZHAO B, ZHANG J W. Integrated agronomic practices management improve yield and nitrogen balance in double cropping of winter wheat-summer maize. Field Crops Research, 2018,221:196-206.
doi: 10.1016/j.fcr.2018.03.001 |
[19] |
JIN L B, CUI H Y, LI B, ZHANG J W, DONG S T, LIU P. Effects of integrated agronomic management practices on yield and nitrogen efficiency of summer maize in North China. Field Crops Research, 2012,134:30-35.
doi: 10.1016/j.fcr.2012.04.008 |
[20] | YAN P, ZHANG Q, SHUAI X F, PAN J X, ZHANG W J, SHI J F, WANG M, CHEN X P, CUI Z L. Interaction between plant density and nitrogen management strategy in improving maize grain yield and nitrogen use efficiency on the North China Plain. Journal of Agricultural Science, 2016,154(6):978-988. |
[21] |
柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019,45(12):1868-1879.
doi: 10.3724/SP.J.1006.2019.93011 |
BAI Y W, YANG Y H, ZHU Y L, LI H J, XUE J Q, ZHANG R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agronomica Sinica, 2019,45(12):1868-1879. (in Chinese)
doi: 10.3724/SP.J.1006.2019.93011 |
|
[22] |
刘伟, 张吉旺, 吕鹏, 杨今胜, 刘鹏, 董树亭, 李登海, 孙庆泉. 种植密度对高产夏玉米登海661产量及干物质积累与分配的影响. 作物学报, 2011,37(7):1301-1307.
doi: 10.3724/SP.J.1006.2011.01301 |
LIU W, ZHANG J W, LÜ P, YANG J S, LIU P, DONG S T, LI D H, SUN Q Q. Effect of plant density on grain yield dry matter accumulation and partitioning in summer maize cultivar Denghai661. Acta Agronomica Sinica, 2011,37(7):1301-1307. (in Chinese)
doi: 10.3724/SP.J.1006.2011.01301 |
|
[23] |
曹胜彪, 张吉旺, 董树亭, 刘鹏, 赵斌, 杨今胜. 施氮量和种植密度对高产夏玉米产量和氮素利用效率的影响. 植物营养与肥料学报, 2012,18(6):1343-1353.
doi: 10.11674/zwyf.2012.12135 |
CAO S B, ZHANG J W, DONG S T, LIU P, ZHAO B, YANG J S. Effects of nitrogen rate and planting density on grain yield and nitrogen utilization efficiency of high yield summer maize. Plant Nutrition and Fertilizer Science, 2012,18(6):1343-1353. (in Chinese)
doi: 10.11674/zwyf.2012.12135 |
|
[24] |
李广浩, 刘娟, 董树亭, 刘鹏, 张吉旺, 赵斌, 石德杨. 密植与氮肥用量对不同耐密型夏玉米品种产量及氮素利用效率的影响. 中国农业科学, 2017,50(12):2247-2258.
doi: 10.3864/j.issn.0578-1752.2017.12.006 |
LI G H, LIU J, DONG S T, LIU P, ZHANG J W, ZHAO B, SHI D Y. Effects of close planting and nitrogen application rates on grain yield and nitrogen utilization efficiency of different density-tolerance maize hybrids. Scientia Agricultura Sinica, 2017,50(12):2247-2258. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.12.006 |
|
[25] |
RUFFO M L, GENTRY L F, HENNINGER A S, SEEBAYER J R, BELOW F E. Evaluating management factor contributions to reduce corn yield gaps. Agronomy Journal, 2015,107:495-505.
doi: 10.2134/agronj14.0355 |
[26] |
ZHAO P F, CAO G X, ZHAO Y, ZHANG H Y, CHEN X P, LI X L, CUI Z L. Training and organization programs increases maize yield and nitrogen-use efficiency in smallholder agriculture in China. Agronomy Journal, 2016,108(5):1944-1950.
doi: 10.2134/agronj2016.03.0130 |
[27] |
CUI Z L, CHEN X P, ZHANG F S. Current nitrogen management status and measures to improve the intensive wheat-maize system in China. AMBIO, 2010,39(5/6):376-384.
doi: 10.1007/s13280-010-0076-6 |
[28] |
MENG Q F, YUE S C, HOU P, CUI Z L, CHEN X P. Improving yield and nitrogen use efficiency simultaneously for maize and wheat in China: A review. Pedosphere, 2016,26(2):137-147.
doi: 10.1016/S1002-0160(15)60030-3 |
[29] |
SINCLAIR T R, RUFTY T W. Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Global Food Security, 2012,1(2):94-98.
doi: 10.1016/j.gfs.2012.07.001 |
[30] | 侯云鹏, 杨建, 尹彩侠, 秦裕波, 李前, 于雷, 孔丽丽, 刘志全. 氮肥后移对春玉米产量、氮素吸收利用及土壤氮素供应的影响. 玉米科学, 2019,27(2):146-154. |
HOU Y P, YANG J, YIN C X, QIN Y B, LI Q, YU L, KONG L L, LIU Z Q. Effect of postponing nitrogen application on the yield, nitrogen absorption and utilization and soil nitrogen supply in spring maize. Journal of Maize Sciences, 2019,27(2):146-154. (in Chinese) | |
[31] |
袁静超, 刘剑钊, 梁尧, 展文洁, 张洪喜, 曾子豪, 蔡红光, 任军. 综合农学管理模式对春玉米产量和养分累积特征的影响. 中国农业科学, 2019,52(20):3546-3558.
doi: 10.3864/j.issn.0578-1752.2019.20.006 |
YUAN J C, LIU J Z, LIANG Y, ZHAN W J, ZHANG H X, ZENG Z H, CAI H G, REN J. Characteristics of grain yield and nutrient accumulation for spring maize under different agronomic management practices. Scientia Agricultura Sinica, 2019,52(20):3546-3558. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.20.006 |
|
[32] | 马星竹, 郝小雨, 高中超, 李一丹, 周宝库. 氮肥用量对土壤养分含量、春玉米产量及农学效率的影响. 玉米科学, 2016,24(6):131-135. |
MA X Z, HAO X Y, GAO Z C, LI Y D, ZHOU B K. Influence to the rate of nitrogen fertilizer application on soil nutrient content, spring maize yield and agronomic efficiency. Journal of Maize Sciences, 2016,24(6):131-135. (in Chinese) | |
[33] | 王鸿斌, 陈丽梅, 赵兰坡, 刘会青, 王宇. 吉林玉米带现行耕作制度对黑土肥力退化的影响. 农业工程学报, 2009,25(9):301-305. |
WANG H B, CHEN L M, ZHAO L P, LIU H Q, WANG Y. Influence of present farming system of corn belt on fertility degradation in Jilin province. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(9):301-305. (in Chinese) | |
[34] | 王立春, 马虹, 郑金玉. 东北春玉米耕地合理耕层构造研究. 玉米科学, 2008,16(4):13-17. |
WANG L C, MA H, ZHENG J Y. Research on rational plough layer construction of spring maize soil in northeast China. Journal of Maize Sciences, 2008,16(4):13-17. (in Chinese) | |
[35] | 张世煌, 李少昆. 国内外玉米产业技术发展报告. 北京: 中国农业科学技术出版社, 2010. |
ZHANG S H, LI S K. Domestic and Foreign Corn Industrial Technology Development Report. Beijing: China Agricultural Science and Technology Press, 2010. (in Chinese) | |
[36] | WATSON G W, KELSEY P. The impact of soil compaction on soil aeration and fine root density of Quercus palustris. Urban Forestry & Urban Greening, 2006,4(2):69-74. |
[37] |
EVANS S D, LINDSTROM M J, VOORHEES W B, MONCRIEF J. F, NELSON G A. Effect of subsoiling and subsequent tillage on soil bulk density, soil moisture, and corn yield. Soil and Tillage Research, 1996,38(1/2):35-46.
doi: 10.1016/0167-1987(96)01020-3 |
[38] |
CAI H G, MA W, ZHANG X Z, PING J Q, YAN X G, LIU J Z, YUAN J C, WANG L C, REN J. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize. The Crop Journal, 2014,2(5):297-307.
doi: 10.1016/j.cj.2014.04.006 |
[1] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[2] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. |
[3] | 韩守威,司纪升,余维宝,孔令安,张宾,王法宏,张海林,赵鑫,李华伟,孟鈺. 山东省冬小麦产量差与氮肥利用效率差形成机理解析[J]. 中国农业科学, 2022, 55(16): 3110-3122. |
[4] | 徐芳蕾,张杰,李阳,张伟伟,薄其飞,李世清,岳善超. 施肥方式对黄土高原旱作春玉米农田土壤氨挥发的影响[J]. 中国农业科学, 2022, 55(12): 2360-2371. |
[5] | 刘霞霞,李扬,王靖,黄明霞,白蕤,宋扬,胡琦,张佳莹,陈仁伟. 基于APSIM模型的内蒙古四大生态区不同降水年型下主要作物适应性评价[J]. 中国农业科学, 2022, 55(10): 1917-1937. |
[6] | 唐建昭,王靖,肖登攀,潘学标. 马铃薯生长模型的研究进展及发展前景[J]. 中国农业科学, 2021, 54(5): 921-932. |
[7] | 李娥,赵锦,叶清,高继卿,杨晓光. 全球气候变暖对中国种植制度可能影响ⅩⅢ. 东北三省春玉米熟型调整的降水限制及其对产量的可能影响[J]. 中国农业科学, 2021, 54(18): 3847-3859. |
[8] | 姚凡云,刘志铭,曹玉军,吕艳杰,魏雯雯,吴兴宏,王永军,谢瑞芝. 不同类型氮肥对东北春玉米土壤N2O和CO2昼夜排放的影响[J]. 中国农业科学, 2021, 54(17): 3680-3690. |
[9] | 周一帆,杨林生,孟博,战健,邓燕. 中国甘蔗主产区产量差及影响因素分析[J]. 中国农业科学, 2021, 54(11): 2377-2388. |
[10] | 曹玉贤,朱建强,侯俊. 中国再生稻的产量差及影响因素[J]. 中国农业科学, 2020, 53(4): 707-719. |
[11] | 黄秋婉,刘志娟,杨晓光,白帆,刘涛,张镇涛,孙爽,赵锦. 东北三省西部春玉米适应气候变化的高产高效灌溉方案分析[J]. 中国农业科学, 2020, 53(21): 4470-4484. |
[12] | 杨哲,于胜男,高聚林,田甜,孙继颖,魏淑丽,胡树平,李荣发,李从锋,王志刚. 主要栽培措施对北方春玉米产量贡献的定量评估[J]. 中国农业科学, 2020, 53(15): 3024-3035. |
[13] | 朴琳,李波,陈喜昌,丁在松,张宇,赵明,李从锋. 优化栽培措施对春玉米密植群体冠层结构及产量形成的调控效应[J]. 中国农业科学, 2020, 53(15): 3048-3058. |
[14] | 柏延文,张宏军,朱亚利,郑学慧,杨梅,李从锋,张仁和. 不同株型玉米冠层光氮分布、衰老特征及光能利用对增密的响应[J]. 中国农业科学, 2020, 53(15): 3059-3070. |
[15] | 姜英,王峥宇,廉宏利,王美佳,苏业涵,田平,隋鹏祥,马梓淇,王英俨,孟广鑫,孙悦,李从锋,齐华. 耕作和秸秆还田方式对东北春玉米吐丝期根系特征及产量的影响[J]. 中国农业科学, 2020, 53(15): 3071-3082. |
|