[1] |
BOVÉ J M . Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology, 2006,88(1):7-37.
|
[2] |
胡燕, 王雪峰, 周常勇 . 柑橘黄龙病菌亚洲种、虫媒及植物寄主互作研究进展. 园艺学报, 2016,43(9):1688-1698.
|
|
HU Y, WANG X F, ZHOU C Y . Recent advances in interactions among ‘ Candidatus Liberibacter asiaticus’, insect vector and plant host. Acta Horticulturae Sinica, 2016,43(9):1688-1698. (in Chinese)
|
[3] |
REINKING O A . Diseases of economic plants in Southern China. Philippine Agriculturist, 1919,8(4):109-134.
|
[4] |
SCHNEIDER H . Anatomy of greening-diseased sweet orange shoots. Phytopathology, 1968,58(1):1155-1160.
|
[5] |
ETXEBERRIA E, GONZALEZ P, ACHOR D, ALBRIGO G . Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees. Physiological and Molecular Plant Pathology, 2009,74(1):76-83.
|
[6] |
ALBRECHT U, BOWMAN K D. Transcriptional response of susceptible and tolerant citrus to infection with ‘Candidatus Liberibacter asiaticus’. Plant Science, 2012,185/186:118-130.
|
[7] |
BOAVA L P, CRISTOFANI-YALY M, MACHADO M A . Physiologic, anatomic, and gene expression changes in Citrus sunki, Poncirus trifoliata and their hybrids after ‘Candidatus Liberibacter asiaticus’ infection. Phytopathology, 2017,107(5):590-599.
|
[8] |
FOLIMONOVA S Y, ROBERTSON C J, GARNSEY S M, GOWDA S, DAWSON W O . Examination of the responses of different genotypes of citrus to Huanglongbing (citrus greening) under different conditions. Phytopathology, 2009,99(12):1346-1354.
|
[9] |
SHOKROLLAH H, ABDULLAH T L, SIJAM K, ABDULLAH S N A, ABDULLAH N A P. Differential reaction of citrus species in Malaysia to Huanglongbing (HLB) disease using grafting method. American Journal of Agricultural and Biological Science, 2009,4(1):338.
|
[10] |
MARTINELLI F, URATSU S L, ALBRECHT U, REAGAN R L, PHU M L, BRITTON M, BUFFALO V, FASS J, LEICHT E, ZHAO W, LIN D, D’SOUZA R, DAVIS C E, BOWMAN K D, DANDEKAR A M. Transcriptome profiling of citrus fruit response to Huanglongbing disease. PLoS ONE, 2012,7(5):e38039.
|
[11] |
ALBRECHT U, BOWMAN K D . Gene expression in Citrus sinensis(L.) Osbeck following infection with the bacterial pathogen ‘Candidatus Liberibacter asiaticus’ causing Huanglongbing in Florida. Plant Science, 2008,175(3):291-306.
|
[12] |
KIM J S, SAGARAM U S, BURNS J K, LI J L, WANG N . Response of sweet orange ( Citrus sinensis) to ‘Candidatus Liberibacter asiaticus’ infection: Microscopy and microarray analyses. Phytopathology, 2009,99(1):50-57.
|
[13] |
FAN J, CHEN C, BRLANSKY R H, GMITTER F G, LI Z G . Changes in carbohydrate metabolism in Citrus sinensis infected with ‘Candidatus Liberibacter asiaticus’. Plant Pathology, 2010,59(6):1037-1043.
|
[14] |
FAN J, CHEN C, YU Q, BRLANSKY R H, LI Z G, GMITTER F G . Comparative iTRAQ proteome and transcriptome analyses of sweet orange infected by ‘ Candidatus Liberibacter asiaticus’. Physiologia Plantarum, 2011,143(3):235-245.
|
[15] |
ALBRECHT U, FIEHN O, BOWMAN K D . Metabolic variations in different citrus root stock cultivars associated with different responses to Huanglongbing. Plant Physiology and Biochemistry, 2016,107:33-44.
|
[16] |
ARITUA V, ACHOR D, GMITTER F G, ALBRIGO G, WANG N . Transcriptional and microscopic analyses of citrus stem and root responses to ‘ Candidatus Liberibacter asiaticus’ infection. PLoS ONE, 2013,8(9):e73742.
|
[17] |
MARTINELLI F, REAGAN R L, URATSU S L, PHU M L, ALBRECHT U, ZHAO W, DAVIS C E, BOWMAN K D, DANDEKAR A M . Gene regulatory networks elucidating Huanglongbing disease mechanisms. PLoS ONE, 2013,8(9):e74256.
|
[18] |
ZHONG Y, CHENG C Z, JIANG B, JIANG N H, ZHANG Y Y, HU M L, ZHONG G Y . Digital gene expression analysis of Ponkan mandarin (Citrus reticulata Blanco) in response to Asia citrus psyllid-vectored Huanglongbing infection. International Journal of Molecular Sciences, 2016,17(7):1063.
|
[19] |
FAN J, CHEN C, YU Q, KHALAF A, ACHOR D S, BRLANSKY R H, MOORE G A, LI Z G, GMITTER F G . Comparative transcriptional and anatomical analyses of tolerant rough lemon and susceptible sweet orange in response to ‘ Candidatus Liberibacter asiaticus’ infection. Molecular Plant-Microbe Interactions, 2012,25(11):1396-1407.
|
[20] |
ZHONG Y, CHENG C Z, JIANG N H, JIANG B, ZHANG Y Y, WU B, HU M L, ZENG J W, YAN H X, YI G J, ZHONG G Y . Comparative transcriptome and iTRAQ proteome analyses of citrus root responses to ‘ Candidatus Liberibacter asiaticus’ infection. PLoS ONE, 2015,10(6):e0126973.
|
[21] |
LIAO H L, BURNS J K . Gene expression in Citrus sinensis fruit tissues harvested from Huanglongbing-infected trees: Comparison with girdled fruit. Journal of Experimental Botany, 2012,63(8):3307-3319.
|
[22] |
DUAN Y P, ZHOU L J, HALL D G, LI W B, DODDAPANENI H, LIN H, LIU L, VAHLING C M, GABRIEL D W, WILLIAMS K P, DICKERMAN A, SUN Y J, COTTWALD T . Complete genome sequence of citrus Huanglongbing bacterium, ‘ Candidatus Liberibacter asiaticus’ obtained through metagenomics. Molecular Plant-Microbe Interactions, 2009,22(8):1011-1020.
|
[23] |
LU H, ZHANG C, ALBRECHT U, SHIMIZU R, WANG G, BOWMAN K D . Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis. Frontiers in Plant Science, 2013,4:157.
|
[24] |
ROSALES R, BURNS J K . Phytohormone changes and carbohydrate status in sweet orange fruit from Huanglongbing-infected trees. Journal of Plant Growth Regulation, 2011,30(3):312-321.
|
[25] |
NEHELA Y, HIJAZ F, ELZAAWELY A A, EL-ZAHABY H M, KILLINY N. Citrus phytohormonal response to ‘ Candidatus Liberibacter asiaticus’ and its vector Diaphorina citri. Physiological and Molecular Plant Pathology, 2018,102:24-35.
|
[26] |
HU Y, ZHONG X, LIU X L, LOU B H, ZHOU C Y, WANG X F . Comparative transcriptome analysis unveils the tolerance mechanisms of Citrus hystrix in response to ‘Candidatus Liberibacter asiaticus’ infection. PLoS ONE, 2017,12(12):e0189229.
|
[27] |
KOH E J, ZHOU L, WILLIAMS D S, PARK J, DING N, DUAN Y P, KANG B H . Callose deposition in the phloem plasmodesmata and inhibition of phloem transport in citrus leaves infected with ‘ Candidatus Liberibacter asiaticus’. Protoplasma, 2012,249(3):687-697.
|
[28] |
FAN J, CHEN C, ACHOR D S, BRLANSKY R H, LI Z G, GMITTER F G . Differential anatomical responses of tolerant and susceptible citrus species to the infection of ‘ Candidatus Liberibacter asiaticus’. Physiological and Molecular Plant Pathology, 2013,83:69-74.
|
[29] |
DENG H, ACHOR D S, EXTEBERRIA E, YU Q, DU D, STANTON D, LIANG G, GMITTER FG . Phloem regeneration is a mechanism for Huanglongbing-tolerance of ‘Bearss’ lemon and ‘LB8-9’ sugar Belle® mandarin. Frontiers in Plant Science, 2019,10:277.
|
[30] |
WANG Y S, ZHOU L J, YU X Y, STOVER E, LUO F, DUAN Y P . Transcriptome profiling of Huanglongbing (HLB) tolerant and susceptible citrus plants reveals the role of basal resistance in HLB tolerance. Frontiers in Plant Science, 2016,7:933.
|
[31] |
LIONETTI V . PECTOPLATE: The simultaneous phenotyping of pectin methylesterases, pectinases, and oligogalacturonides in plants during biotic stresses. Frontiers in Plant Science, 2015,6:331.
|
[32] |
OWENS R A, BLACKBURN M, DING B . Possible involvement of the phloem lectin in long-distance viroid movement. Molecular Plant-Microbe Interactions, 2001,14(7):905-909.
|
[33] |
FOLIMONOVA S Y, ACHOR D S . Early events of citrus greening (Huanglongbing) disease development at the ultrastructural level. Phytopathology, 2010,100(9):949-958.
|
[34] |
CHISHOLM S T, COAKER G, DAY B, STASKAWICA B J . Host-microbe interactions: Shaping the evolution of the plant immune response. Cell, 2006,124(4):803-814.
|
[35] |
JONES J D, DANGL J L . The plant immune system. Nature, 2006,444(7117):323-329.
|
[36] |
ZOU H, GOWDA S, ZHOU L, HAJERI S, CHEN G, DUAN Y . The destructive citrus pathogen, ‘ Candidatus Liberibacter asiaticus’ encodes a functional flagellin characteristic of a pathogen-associated molecular pattern. PLoS ONE, 2012,7(9):e46447.
|
[37] |
HAO G X, BOYLE M, ZHOU L J, DUAN Y P . The intracellular citrus Huanglongbing bacterium, ‘ Candidatus Liberibacter asiaticus’ encodes two novel autotransporters. PLoS ONE, 2013,8(7):e68921.
|
[38] |
SHI Q C, FEBRES V J, ZHANG S J, YU F H, MCCOLLUM G, HALL D G, MOORE G A, STOVER E . Identification of gene candidates associated with Huanglongbing tolerance, using ‘ Candidatus Liberibacter asiaticus’ flagellin 22 as a proxy to challenge citrus. Molecular Plant-Microbe Interactions, 2017,31(2):200-211.
|
[39] |
DA GRACA J V, DOUHAN G W, HALBERT S E, KEREMANE M L, LEE R F, VIDALAKIS G, ZHAO H . Huanglongbing: An overview of a complex pathosystem ravaging the world’s citrus. Journal of Integrative Plant Biology, 2016,58(4):373-387.
|
[40] |
ZHANG Y, LI X . Salicylic acid: Biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 2019,50:29-36.
|
[41] |
ZHU F, XI D H, YUAN S, XU F, ZHANG D W, LIN H H . Salicylic acid and jasmonic acid are essential for systemic resistance against Tobacco mosaic virus in Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 2014,27(6):567-577.
|
[42] |
ZOU X, BAI X, WEN Q, XIE Z, WU L, PENG A, HE Y, XU L, CHEN S . Comparative analysis of tolerant and susceptible citrus reveals the role of methyl salicylate signaling in the response to Huanglongbing. Journal of Plant Growth Regulation, 2019,38:1516-1528.
|
[43] |
VAN LOON L C, REP M, PIETERSE C M J . Significance of inducible defense-related proteins in infected plants. Annual Reviews of Phytopathology, 2006,44(1):135-162.
|
[44] |
WU J, ALFREZ F M, JOHNSON E G, GRAHAM J H . Up-regulation of PR 1 and less disruption of hormone and sucrose metabolism in roots is associated with lower susceptibility to ‘ Candidatus Liberibacter asiaticus’. Plant Pathology, 2018,67(6):1426-1435.
|
[45] |
FU S, SHAO J, ZHOU C, HARTUNG J S . Transcriptome analysis of sweet orange trees infected with ‘ Candidatus Liberibacter asiaticus’ and two strains of Citrus tristeza virus. BMC Genomics, 2016,17:349.
|
[46] |
NWUGO C C, DUAN Y, LIN H . Study on citrus response to Huanglongbing highlights a down-regulation of defense-related proteins in lemon plants upon ‘ Ca. Liberibacter asiaticus’ infection. PLoS ONE, 2013,8(6):e67442.
|
[47] |
MARTINELLI F, REAGAN R L, DOLAN D, FILECCIA V, DANDEKAR A M . Proteomic analysis highlights the role of detoxification pathways in increased tolerance to Huanglongbing disease. BMC Plant Biology, 2016,16(1):167.
|