[1] 李海波, 韩晓增, 王风. 长期施肥条件下土壤碳氮循环过程研究进展. 土壤通报, 2007, 38(2): 384-388.
LI H B, HAN X Z, WANG F. Review of soil carbon and nitrogen cycling under Long-term fertilization. Journal of Soil Science, 2007, 38(2): 384-388.
[2] 隋跃宇, 张兴义, 焦晓光, 王其存,赵军. 长期不同施肥制度对农田黑土有机质和氮素的影响. 水土保持学报, 2005, 19(6): 190-192.
SUI Y Y, ZHANG X Y, JIAO X G, WANG Q C, ZHAO J. Effect of long-term different fertilizer applications on organic matter and nitrogen of black farmland. Journal of Soil and Water Conservation, 2005, 19(6): 190-192. (in Chinese)
[3] 魏丹, 杨谦, 迟凤琴. 东北黑土区土壤资源现状与存在问题. 黑龙江农业科学, 2006(6): 69-72.
WEI D, YANG Q, CHI F Q. The soil resource conditions and the problems in northeast black soil regions. Heilongjiang Agricultural Sciences, 2006(6): 69-72. (in Chinese)
[4] DENEF K, ROOBROECK D, WADU MWadu, M C W M, LOOTENS P, BOECKX. Microbial community composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils. Soil Biology and Biochemistry, 2009, 41(1): 144-153.
[5] DEGENS B P, SCHIPPER L A, SPARLING G P, VOJVODICVUKOVIC M. Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biology and Biochemistry, 2000, 32(2): 189-196.
[6] PENG C J, LAI S S, LUO X S, LU J W, HUANG Q Y, CHEN W L. Effects of long term rice straw application on the microbial communities of rapeseed rhizosphere in a paddy-upland rotation system. Science of the Total Environment, 2016, 557: 231-239.
[7] ZHOU J, GUAN D, ZHOU B,ZHAO B, MA M, QIN J. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biology and Biochemistry, 2015, 90: 42-51.
[8] XUN W B, ZHAO J, XUE C, ZHANG G, RAN W, WANG B. Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in South China. Environmental Microbiology, 2016, 18(6): 1907-1917.
[9] 魏巍, 许艳丽, 朱琳, 韩晓增. 长期施肥对黑土农田土壤微生物群落的影响. 土壤学报, 2013, 50(2): 372-380.
WEI W, XU Y L, ZHU L, HAN X Z. Effect of long-term fertilization on soil microbial communities in farmland of black soil. Acta Pedologica Sinica, 2013, 50(2): 372-380. (in Chinese)
[10] 马琳, 孙本华, 孙瑞, 高明霞, 杨学云. 长期不同施肥对土细菌群落多样性的影响. 西北农业学报, 2015, 24(6): 162-170.
MA L, SUN B H, SUN R, GAO M X, YANG X Y. Effect of long-term different fertilization on bacterial community diversity of lou soil. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(6): 162-170. (in Chinese)
[11] GRANDY A S, STRICKLAND M S, LAUBER C L, BRADFORD M A, FIERER N. The influence of microbial communities, management, and soil texture on soil organic matter chemistry. Geoderma, 2009, 150(3/4): 278-286.
[12] HU S, FIRESTONE M K, CHAPIN F S. Soil microbial feedbacks to atmospheric CO2 enrichment. Trends in Ecology and Evolution, 1999, 14(11): 433.
[13] MG V D H, BARDETT R D, STRAALEN N M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 2008, 11(3): 296-310.
[14] 陈永亮, 陈保冬, 刘蕾, 胡亚军, 徐天乐, 张莘. 丛枝菌根真菌在土壤氮素循环中的作用. 生态学报, 2014, 34(17): 4807-4815.
CHEN Y L, CHEN B D, Liu L, HU Y J, XU T L, ZHANG S. The role of arbuscular mycorrhizal fungi in soil nitrogen cycling. Acta Ecologica Sinica, 2014, 34(17): 4807-4815. (in Chinese)
[15] STRICKLAND M S, ROUSK J. Considering fungal: bacterial dominance in soils - methods, controls, and ecosystem implications. Soil Biology and Biochemistry, 2010, 42(9): 1385-1395.
[16] SONNEMANN I, WOLTTERS V. The microfood web of grassland soils responds to a moderate increase in atmospheric CO2. Global Change Biology, 2005, 11(7): 1148-1155.
[17] VESTERGARD M, HENRY F, RANGEL-CASTRO J I, MICHELSEN A, PROSSER J I. Rhizosphere bacterial community composition responds to arbuscular mycorrhiza, but not to reductions in microbial activity induced by foliar cutting. Fems Microbiology Ecology, 2008, 64(1): 78-89.
[18] ZHOU J, JIANG X, ZHOU B K, ZHAO B S, MA M CH, GUAN D W, LI J, CHEN S F, CAO M F, SHEN D L, QIN J. Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China. Soil Biology and Biochemistry, 2016, 95: 135-143.
[19] 秦杰, 姜昕, 周晶, 马鸣超, 关大伟, 周宝库, 赵百锁, 杜秉海, 李俊. 长期不同施肥黑土细菌和古菌群落结构及主效影响因子分析. 植物营养与肥料学报, 2015, 21(6): 1590-1598.
QIN J, JIANG X, ZHOU J, MA M C, GUAN D W, ZHOU B K, ZHAO B S, DU B H, LI J. Characteristics and driving factors of soil bacterial and archaeal communities under long-term fertilization regimes in black soil. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1590-1598. (in Chinese)
[20] 于淑玲. 腐生真菌在有机质分解过程中的作用研究进展. 河北师范大学学报(自然科学版), 2003, 27(5): 519-522.
YU S L. A study of function that rot funguses have in the decomposition of organic matter. Journal of Hebei Normal University (Natural Science Edition), 2003, 27(5): 519-522. (in Chinese)
[21] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Methods of Analyzing Agricultural Soil Chemical Properties. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[22] HERLEMANN D P, LABRENZ M, JÜRGENS K, BERTILSSON S, WANIEK J J, ANDERSSON A F. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. Isme Journal, 2011, 5(10): 1571.
[23] KHOR W C, ROUME H, COMA M, HAN V, RABAEY K. Acetate accumulation enhances mixed culture fermentation of biomass to lactic acid. Applied Microbiology and Biotechnology, 2016, 100(19): 8337-8348.
[24] KORMAS K A, PACHIADAKI M G, KARAYANNI H, LEADBETTER E R, BERNHARD J M, EDCOMB V P. Inter- comparison of the potentially active prokaryotic communities in the halocline sediments of Mediterranean deep-sea hypersaline basins. Extremophiles, 2015, 19(5): 949-960.
[25] BECK J J, LIGON J M. Polymerase chain reaction assays for the detection of Stagonospora nodorum and Septoria tritici in wheat. Phytopathology, 1995, 85(3): 319-324.
[26] Romón P, ZHOU X, ITURRONDOBEIRIA J C, WINGFIELD M J, GOLDARAZENA A. Ophiostoma species (Ascomycetes: Ophiostomatales) associated with bark beetles (Coleoptera: Scolytinae) colonizing Pinus radiata in northern Spain. Canadian Journal of Microbiology, 2007, 53(6): 756-767.
[27] De'Ath G. De'Ath G. Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology, 2001, 83(4): 1105-1117.
[28] GEISSELER D, SCOW K M. Long-term effects of mineral fertilizers on soil microorganisms-A review. Soil Biology and Biochemistry, 2014, 75: 54-63.
[29] SUN L, XUN W B, HUANG T, ZHANG G, GAO J, RAN W. Alteration of the soil bacterial community during parent material maturation driven by different fertilization treatments. Soil Biology and Biochemistry, 2016, 96: 207-215.
[30] LING N, ZHU CH, XUE CH, DUAN Y H, CHANG P, GUO S W, SHN Q R. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biology and Biochemistry, 2016, 99: 137-149.
[31] ZENG J, LIU X J, SONG L, LIN X G, ZHANG H Y, SHEN C C, CHU H Y. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biology and Biochemistry, 2015, 92: 41-49.
[32] ROUSK J, BROOKES P C, BAATH E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied & Environmental Microbiology, 2009, 75(6): 1589-1596.
[33] XUN W B, HUANG T, ZHAO J, RAN W, WANG B R, SHEN Q R, ZHANG R F. Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities. Soil Biology and Biochemistry, 2015, 90: 10-18.
[34] TIBBETT M, SANDERS F E. Ectomycorrhizal symbiosis can enhance plant nutrition through improved access to discrete organic nutrient patches of high resource quality. Annals of Botany, 2002, 89(6): 783.
[35] XU M G, TANG H J, YANG X Y, ZHOU SH W. Best soil managements from long-term field experiments for sustainable agriculture. Journal of Integrative Agriculture, 2015, 14(12): 2401-2404.
[36] HIBBETT D S. A phylogenetic overview of the Agaricomycotina. Mycologia, 2006, 98(6): 917.
[37] LUIS P, WALTHER G, KELLNER H, MARTIN F, BUSCOT F. Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biology and Biochemistry, 2004, 36(7): 1025-1036.
[38] WANG J CH, SONG Y, MA T, RAZA W, LI J, HOWLAND J G. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Applied Soil Ecology, 2017, 112: 42-50.
[39] JANSSEN P H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied & Environmental Microbiology, 2006, 72(3): 1719-1728.
[40] JONES R T, ROBESON M S, LAUBER C L, HAMADY M, KNIGHT R, FIERER N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. Isme Journal, 2009, 3(4): 442.
[41] GRIFFITH R I, THOMSON B C, PHILLIP J, THOMAS B. The bacterial biogeography of British soils. Environmental Microbiology, 2011, 13(6): 1642-1654.
[42] FIERER N, LAUBER C L, RAMIREZ K S, ZANEVELD J, BRADFORD M A, KNIGHT R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. Isme Journal, 2012, 6(5): 1007.
[43] FIERER N, BRADFORD M A, JACKSON R B. Toward an ecological classification of soil bacteria. Ecology, 2007, 88(6): 1354.
[44] 曾希柏, 王亚男, 王玉忠, 林志灵, 李莲芳, 白玲玉, 苏世鸣, 沈灵凤. 不同施肥模式对设施菜地细菌群落结构及丰度的影响. 中国农业科学, 2013, 46(1): 69-79.
ZENG X B, WANG Y N, WANG Y Z, LIN Z Z, LI L F, BAI L Y, SU S M, SHEN L F. Effects of different fertilization regimes on abundance and composition of the bacterial community in greenhouse vegetable soils. Scientia Agricultura Sinica, 2013, 46(1): 69-79. (in Chinese)
[45] BRUUN S. Estimating turnover of soil organic carbon fractions based on radiocarbon measurements. Radiocarbon, 2005, 47(1): 99-113.
[46] FOG K. The effect of added nitrogen on the rate of decomposition of organic matter. Biological Reviews, 2010, 63(3): 433-462. |