[1] Boyer J S, Plant productivity and environment. Science, 1982, 218(4517): 443-448.
[2] Thomashow M F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Biology,1999, 50(50): 571-599.
[3] Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. The Plant Cell, 2002, 14(Suppl): s165-s183.
[4] Zhu J, Dong C H, Zhu J K. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Current Opinion in Plant Biology, 2007, 10(3): 290-295.
[5] 冯勋伟, 才宏伟. 结缕草CBF基因的同源克隆及其转基因拟南芥的抗寒性验证. 作物学报, 2014, 40(9): 1572-1578.
Feng X W, Cai H W. Cloning of zoysiagrass CBF gene and validation of cold tolerance in transgenic Arabidopsis. Acta Agronomica Sinica, 2014, 40(9): 1572-1578. (in Chinese)
[6] 裴丽丽, 郭玉华, 徐兆师, 李连城, 陈明, 马有志. 植物逆境胁迫相关蛋白激酶的研究进展. 西北植物学报, 2012(5): 1052-1061.
Pei L L, Guo Y H, Xu Z S, Li L C, Chen M, Ma Y Z. The research progress of stress related protein kinase in plants. Acta Botanica Boreali-Occidentalia Sinica, 2012(5): 1052-1061. (in Chinese)
[7] Chen W J, Zhu T. Networks of transcription factors with roles in environmental stress response. Trends in Plant Science, 2004, 9(12): 591-596.
[8] Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K,Yamaguchi-Shinozaki K. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiology, 2004, 136(1): 2734-2746.
[9] Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends in Plant Science, 2005, 10(2): 88-94.
[10] Pazares J, Ghosal D, Wienand U, Peterson P A, Saedler H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. Embo Journal, 1987, 6(12): 3553-3558.
[11] Xu D Q, Huang J, Guo S Q, Yang X, Bao Y M, Tang H J, Zhang H S. Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Letters, 2008, 582(7): 1037-1043.
[12] Xu Z S, Chen M, Li L C, Ma Y Z. Functions and application of the AP2/ERF transcription factor family in crop improvement. Journal of Integrative Plant Biology, 2011, 53(7): 570-585.
[13] Luo X, Bai X, Zhu D, Li Y, Ji W, Cai H, Wu J, Liu B, Zhu Y. GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress. Planta, 2012, 235 (6): 1141-1155.
[14] Medina J, Bargues M, Terol J, Pérez-Alonso M, Salinas J. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiology, 1999, 119(2): 463-470.
[15] Nordin K, Vahala T, Palva E T. Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Molecular Biology, 1993, 21(2): 641-653.
[16] Welin B V, Olson A, Palva E T. Structure and organization of two closely related low-temperature-induced dhn/lea/rab-like genes in Arabidopsis thaliana L. Heynh. Plant Molecular Biology, 1995, 29(2): 391-395.
[17] Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences of the USA, 1997, 94(3): 1035-1040.
[18] Yamaguchi-Shinozaki K, Shinozaki K. A novel cisacting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell, 1994, 6(2): 251-264.
[19] Gilmour S J, Sebolt A M, Salazar M P, Everard J D, Thomashow M F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiology, 2000, 124(4): 1854-1865.
[20] Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280(5360): 104-106.
[21] Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature responsive gene expression, respectively, in Arabidopsis. The Plant Cell, 1998, 10(8): 1391-1406.
[22] Novillo F, Alonso J M, Ecker J R, Salinas J. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 2004, 101(11): 3985-3990.
[23] Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X, Agarwal M, Zhu J K. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development, 2003, 17(8): 1043-1054.
[24] Fursova O V, Pogorelko G V, Tarasov V A. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene, 2009, 429(1/2): 98-103.
[25] Dong C H, Pei H. Over-expression of miR397 improves plant tolerance to cold stress in Arabidopsis thaliana. Journal of Plant Biology, 2014, 57(4): 209-217.
[26] Matsui A, Ishida J, Morosawa T, Okamoto M, Kim J M, Kurihara Y, Kawashima M, Tanaka M, To T K, Nakaminami K, Kaminuma E, Endo T A, Mochizuki Y, Kawaguchi S, Kobayashi N, Shinozaki K, Toyoda T, Seki M. Arabidopsis tiling array analysis to identify the stress-responsive genes. Methods in Molecular Biology, 2010, 639: 141-155.
[27] Xin Z, Mandaokar A, Chen J, Last R L, Browse J. Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. The Plant Journal, 2007, 49(5): 786-799.
[28] Chinnusamy V, Zhu J K, Sunkar R. Gene regulation during cold stress acclimation in plants. Methods in Molecular Biology, 2010, 639: 39-55.
[29] Davletova S, Schlauch K, Coutu J, Mittler R. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiology, 2005, 139(2): 847-856.
[30] Kim J C, Lee S H, Cheong Y H, Yoo C M, Lee S I, Chun H J, Yun D J, Hong J C, Lee S Y, Lim C O, Cho M J. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. The Plant Journal, 2001, 25(3): 247-259.
[31] Huang J, Sun S J, Xu D Q, Yang X, Bao Y M, Wang Z F, Tang H J, Zhang H. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochemical and Biophysical Research Communications, 2009, 389(3): 556-561.
[32] Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, Chong K. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta, 2007, 226(4): 1007-1016.
[33] Mukhopadhyay A, Vij S, Tyagi A K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proceedings of the National Academy of Sciences of the USA, 2004, 101(16): 6309-6314.
[34] 智冠华, 史军娜, 赵晓鑫, 刘胜利, 陈玉珍, 卢存福. 转沙冬青锌指蛋白基因AmZFPG烟草非生物胁迫抗性分析. 园艺学报, 2013, 40(4): 713-723.
Zhi G H, Shi J N, Zhao X X, Liu S L, Chen Y Z, Lu C F. The abiotic stress resistance analysis of Zinc-finger protein gene AmZFPG in tobacco. Acta Horticulturae Sinica, 2013, 40(4): 713-723. (in Chinese)
[35] Liu W X, Zhang F C, Zhang W Z, Song L F, Wu W H, Chen Y F. Arabidopsis Di19 functions as a transcription factor and modulates PR1, PR2, and PR5 expression in response to drought stress. Molecular Plant, 2013, 6(5): 1487-1502.
[36] Milla M A, Townsend J, Chang I F, Cushman J C. The Arabidopsis AtDi19 gene family encodes a novel type of Cys2/His2 zinc-finger protein implicated in ABA-independent dehydration, high-salinity stress and light signaling pathways. Plant Molecular Biology, 2006, 61(1/2): 13-30.
[37] Wang L, Yu C, Chen C, He C, Zhu Y, Huang W. Identification of rice Di19 family reveals OsDi19-4 involved in drought resistance. Plant cell reports, 2014, 33(12): 2047-2062.
[38] Feng Z J, Cui X Y, Cui X Y, Chen M, Yang G X, Ma Y Z, He G Y, Xu Z S. The soybean GmDi19-5 interacts with GmLEA3.1 and increases sensitivity of transgenic plants to abiotic stresses. Frontiers in Plant Science, 2015, 6: 179.
[39] Wang L, Yu C, Xu S, Zhu Y, Huang W. OsDi19-4 acts downstream of OsCDPK14 to positively regulate ABA response in rice. Plant Cell Environment, 2016, 39 (12): 2740-2753.
[40] Li S, Xu C, Yang Y, Xia G. Functional analysis of TaDi19A, a salt-responsive gene in wheat. Plant Cell Environment, 2010, 33(1): 117-129.
[41] Kelley L A, Mezulis S, Yates C M, Wass M N, Sternberg M J. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 2015, 10(6): 845-858.
[42] He G H, Xu J Y, Wang Y X, Liu J M, Li P S, Chen M, Ma Y Z, Xu Z S. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biology, 2016, 16(1): 116.
[43] 于太飞, 徐兆师, 李盼松, 陈明, 李连城, 张俊华, 马有志. 小麦蛋白激酶TaMAPK2互作蛋白的筛选与验证. 中国农业科学, 2014, 47(13): 2494-2503.
Yu T F, Xu Z S, Li P S, Chen M, Li L C, Zhang J H, Ma Y Z. Screening and identification of proteins interacting with TaMAPK2 in wheat. Scientia Agricultura Sinica, 2014, 47(13): 2494-2503. (in Chinese)
[44] 张艳, 杨传平. 金属硫蛋白的研究进展. 分子植物育种, 2006(S1): 73-78.
zhang Y, Yang C P. The research progress of metallothionein. Molecular plant breeding, 2006(S1): 73-78. (in Chinese)
[45] 丁安琪, 冯莹, 朱里莹, 徐世荣, 秦军, 潘东明. 水仙温度诱导脂质运载蛋白基因NtTIL的克隆与表达分析. 园艺学报, 2016, 43(1): 161-167.
Ding A Q, Feng Y, Zhu L Y, Xu S R, Qin J, Pan D M. Cloning and expressional analysis of narcissus temperature stress-induced lipocalin gene NtTIL. Acta Horticulturae Sinica, 2016, 43(1): 161-167. (in Chinese)
[46] 栗振义, 龙瑞才, 张铁军, 杨青川, 康俊梅. 植物热激蛋白研究进展. 生物技术通报, 2016(2): 7-13.
Li Z Y, Long R C, Zhang T J, Yang Q C, Kang J M. The research progress of plant heat shock proteins. Biotechnology Bulletin, 2016(2): 7-13. (in Chinese)
[47] 齐妍, 徐兆师, 李盼松, 陈明, 李连城, 马有志. 植物热激蛋白70的分子作用机理及其利用研究进展. 植物遗传资源学报, 2013(3): 507-511.
Qi Y, Xu Z S, Li P S, Chen M, Li L C, Ma Y Z. The molecular mechanism and research progress of plant heat shock protein 70. Journal of Plant Genetic Resources, 2013(3): 507-511. (in Chinese)
[48] 杨玉珍, 雷志华, 彭方仁. 低温诱导蛋白及其与植物的耐寒性研究进展. 西北植物学报, 2007(2): 421-428.
Yang Y Z, Lei Z H, Peng F R. The research progress of low temperature induced protein and cold tolerance in plants. Acta Botanica Boreali Occidentalia Sinica, 2007(2): 421-428. (in Chinese)
[49] Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 2007, 58(2): 221-227.
[50] Kang X, Chong J, Ni M. HYPERSENSITIVE TO RED AND BLUE 1, a ZZ-type zinc finger protein, regulates phytochrome B-mediated red and cryptochrome-mediated blue light responses. The Plant Cell, 2005, 17(3): 822-835.
[51] Milla M A R, Townsend J, Chang I F, Cushman J C. The Arabidopsis AtDi19 gene family encodes a novel type of Cys2/His2 Zinc-finger protein implicated in ABA-independent dehydration, high-salinity stress and light signaling pathways. Plant Molecular Biology, 2006, 61(1/2): 13-30.
[52] Fan Y, Zhang S, Meng Y, Huang Z. Increase in salt tolerance of Arabidopsis thaliana by TaDi19. Journal of Plant Growth Regulation, 2015, 35(1): 163-171.
[53] Timperio A M, Egidi M G, Zolla L. Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). Journal of Proteomics, 2008, 71(4): 391-411.
[54] Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 2004, 9(5): 244-252.
[55] Abo-Ogiala A, Carsjens C, Diekmann H, Fayyaz P, Herrfurth C, Feussner I, Polle A. Temperature-induced lipocalin (TIL) is translocated under salt stress and protects chloroplasts from ion toxicity. Journal of Plant Physiology, 2014, 171(3/4): 250-259.
[56] Charron J B, Ouellet F, Pelletier M, Danyluk J, Chauve C, Sarhan F. Identification, expression, and evolutionary analyses of plant lipocalins. Plant Physiology, 2005, 139(4): 2017-2028.
[57] He X, Sambe M A, Zhuo C, Tu Q, Guo Z. A temperature induced lipocalin gene from Medicago falcata (MfTIL1) confers tolerance to cold and oxidative stress. Plant Molecular Biology, 2015, 87(6): 645-654.
[58] Charron J B, Ouellet F, Houde M, Sarhan F. The plant apolipoprotein D ortholog protects Arabidopsis against oxidative stress. BMC Plant Biology, 2008, 8: 86-98. |