中国农业科学 ›› 2016, Vol. 49 ›› Issue (22): 4284-4298.doi: 10.3864/j.issn.0578-1752.2016.22.003
所属专题: 品质支撑农作物产业与未来发展
张 勇1,郝元峰1,张 艳1,何心尧2,夏先春1,何中虎1,3
收稿日期:
2016-04-05
出版日期:
2016-11-16
发布日期:
2016-11-16
通讯作者:
何中虎,Tel:010-82108547;E-mail:zhhecaas@163.com
作者简介:
张勇,Tel:010-82108745;E-mail:zhangyong05@caas.cn
基金资助:
ZHANG Yong1, HAO Yuan-feng1, ZHANG Yan1, HE Xin-yao2, XIA Xian-chun1, HE Zhong-hu1,3
Received:
2016-04-05
Online:
2016-11-16
Published:
2016-11-16
摘要: 作物营养和健康品质改良正在成为世界主要作物的重要研究方向和育种目标。文中围绕铁和锌、抗性淀粉和阿拉伯木聚糖、酚酸和植物固醇,从微量营养元素、功能性膳食纤维、膳食纤维、植物生物活性物质4个方面对小麦籽粒的营养品质研究进行评述,兼顾面筋过敏和赤霉菌毒素对人体健康的影响,概括与育种工作密切相关的分析测定方法、种质资源筛选、基因定位与育种研究进展。提出国内营养和健康品质研究的重点领域,建议加强四方面的工作,(1)优先进行与人体健康密切相关的铁、锌及其生物有效性影响因子植酸含量和植酸酶活性等微量营养元素、阿拉伯木聚糖和抗性淀粉等膳食纤维、酚酸和植物固醇等植物生物活性物质含量的分析,开展大规模营养元素普查工作,筛选营养价值高的育种亲本和材料;(2)加强抗赤霉病相关研究,并将其结果尽快用于育种;(3)通过关联和连锁分析开展基因定位和克隆,发掘基因功能标记或紧密连锁的分子标记,通过与常规育种紧密结合,推动生物技术育种实用化,加快品种选育进程,提高品质育种效率;(4)通过加强国际合作与国内协作,建立小麦品质研究协作网,推广普及现有实用技术并研究新型营养品质快速检测技术。
张 勇,郝元峰,张 艳,何心尧,夏先春,何中虎. 小麦营养和健康品质研究进展[J]. 中国农业科学, 2016, 49(22): 4284-4298.
ZHANG Yong, HAO Yuan-feng, ZHANG Yan, HE Xin-yao, XIA Xian-chun, HE Zhong-hu. Progress in Research on Genetic Improvement of Nutrition and Health Qualities in Wheat[J]. Scientia Agricultura Sinica, 2016, 49(22): 4284-4298.
[1] 何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011, 37: 202-215.
HE Z H, XIA X C, CHEN X M, ZHUANG Q S. Progress of wheat breeding in China and the future perspective. Acta Agronomic Sinica, 2011, 37: 202-215. (in Chinese)
[2] ANDERSSON A A M, DIMBERG L, ÅMAN P, LANDBERG R. Recent findings on certain bioactive components in whole grain wheat and rye. Journal of Cereal Science, 2014, 59: 294-311.
[3] BOUIS H E, WELCH R M. Biofortification-A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science, 2010, 50: S20-S32.
[4] JONES J M, PEÑA R J, KORCZAK R, BRAUN H. Carbohydrates, grains, and wheat in nutrition and health: an overview Part II. Grain terminology and nutritional contributions. Cereal Foods World, 2015, 60: 260-271.
[5] WARD J L, POUTANEN K, GEBRUERS K, PIIRONEN V, LAMPI A M, NYSTROM L, ANDERSSON A A M, AMAN P, BOROS D, RAKSZEGI M, BEDO Z, SHEWRY P R. The HEALTHGRAIN cereal diversity screen: concept, results, and prospects. Journal of Agricultural and Food Chemistry, 2008, 56: 9699-9709.
[6] World Health Organization. Worldwide prevalence of anaemia 1993-2005. WHO Global Database on Anaemia. Geneva: World Health Organization, 2008.
[7] 陈春明. 中国营养状况十年跟踪1990-2000. 北京: 中国医学出版社, 2004.
CHEN C M. Ten-year Tracking Nutrition Status in China. Beijing: People’s Medical Press, 2004. (in Chinese)
[8] Food and Agriculture Organization. Vitamin and mineral requirements in human nutrition: [report of a joint FAO/WHO expert consultation, Bangkok, Thailand, 21-30 September 1998: Geneva: World Health Organization, c2004. 2nd ed., 2004.
[9] 张春义, 王磊. 生物强化在中国-培育新品种提供好营养. 北京: 中国农业科学与技术出版社, 2009.
ZHANG C Y, WANG L. Harvest Plus-China: Breeding Crops for Better Nutrition. Beijing: China Agricultural Science and Technology Press, 2009. (in Chinese)
[10] World Health Organization. Global prevalence of vitamin A deficiency in populations at risk 1995-2005. WHO Global Database on Vitamin A Deficiency. Geneva: World Health Organization, 2009.
[11] TRACY M I, MOLLER G. Continuous flow vapor generation for inductively coupled argon plasma spectrometric analysis. Part 1: Selenium. Journal of Association of Official Analytical Chemists, 1990, 73: 404-410.
[12] CAKMAK I, OZAKAN H, BRAUN J J, WELCH R M, ROMHELD V. Zinc and iron concentrations in seeds of wild, primitive and modern wheats//Improving Human Nutrition through Agriculture: the Role of International Agriculture Research. Workshop Hosted by International Rice Research Institute, Los Banos, Philippines and organized by the International Food Policy Research Institute, 5-7 October, 1999.
[13] CAKMAK I, TORUN A, MILLET E, FELDMAN M, FAHIMA T, KOROL A B, NEVO E, BRAUN H J, OZKAN H. Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Science and Plant Nutrition, 2004, 50: 1047-1054.
[14] PELEG Z, SARANGA Y, YAZICI A, FAHIMA T, OZTUR L, CAKMAK I. Grain zinc, iron and protein contentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil, 2008, 306: 57-67.
[15] FICCO D B M, RIEFOLO C, NICASTRO G, DE SIMONE V, DI GESU A M, BELEGGIA R, PLATANI C, CATTIVELLI L, DE VITA P. Phytate and mineral elements concentration in a collection of Italian durum wheat cultivars. Field Crops Research, 2009, 111: 235-242.
[16] LIU Z H, WANG H Y, WANG X E, ZHANG G P, CHEN P D, LIU D J. Genotypic and spike positional difference in grain phytase activity, phytate, inorganic phosphorus, iron, and zinc contents in wheat. Journal of Cereal Science, 2006, 44: 212-219.
[17] OURY F X, LEENHARDT F, R?M?SY C, CHANLIAUD E, DUPERRIER B, BALFOURIERA F, CHARMET G. Genetic variability and stability of grain magnesium, zinc and iron concentration in bread wheat. European Journal of Agronomy, 2006, 25: 177-185.
[18] ZHANG Y, SONG Q C, YAN J, TANG J W, ZHAO R R, ZHANG Y Q, HE Z H, ZOU C Q, ORTIZ-MONASTERIO I. Mineral element concentrations in grains of Chinese wheat cultivars. Euphytica, 2010, 174: 303-313.
[19] GRAHAM R D, SENADHIRA D, BEEBE S, IGLESIAS C, MONASTERIO I. Breeding for micronutrient density in edible portions of staple food crops conventional approaches. Field Crops Research, 1999, 60: 57-80.
[20] ORTIZ-MONASTERIO I, PALACIOS-ROJAS N, MENG E, PIXLEY K, TRETHOWAN R, PEÑA R J. Enhancing the mineral and vitamin content of wheat and maize through plant breeding. Journal of Cereal Science, 2007, 46: 293-307.
[21] MORGOUNOV A, GÓMEZ-BECERRA H F, ABUGALIEVA A, DZHUNUSOVA M, YESSIMBEKOVA M, MUMINJANOV H, ZELENSKIY Y, OZTURK L, CAKMAK I. Iron and zinc grain density in common wheat grown in Central Asia. Euphytica, 2007, 155: 193-203.
[22] GRAHAM R D, WELCH R, BOUIS H E. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Advances in Agronomy, 2012, 70: 77-142.
[23] VELU G, ORTIZ-MONASTERIO I, CAKMAK I, HAO Y, SINGH R P. Biofortification strategies to increase grain zinc and iron concentrations in wheat. Journal of Cereal Science, 2014, 59: 365-372.
[24] TIWARI V K, RAWAT N, CHHUNEJA P, NEELAM K, AGGARWAL R, RANDHAWA G S, DHALIWAL H S, KELLER B, SINGH K. Mapping of quantitative trait Loci for grain iron and zinc concentration in diploid A genome wheat. Journal of Heredity, 2009, 100: 771-776.
[25] TIWARI C, WALLWORK H, ARUN B, MISHRA V K, VELU G, STANGOULIS J, KUMAR U, JOSHI A K. Molecular mapping of quantitative trait loci for zinc, iron and protein content in the grains of hexaploid wheat. Euphytica, 2016, 207: 563-570.
[26] SRINIVASA J, ARUN B, MISHRA V, SINGH G, VELU G, BABU R, VASISTHA N, JOSHI A. Zinc and iron concentration QTL mapped in a Triticum spelta × T. aestivum cross. Theoretical and Applied Genetics, 2014, 127: 1643-1651.
[27] SRINIVASA J, ARUN B, MISHRA V, SINGH G, VELU G, BABU R, VASISTHA N, JOSHI A. Zinc and iron concentration QTL mapped in a Triticum spelta × T. aestivum cross. Theoretical and Applied Genetics, 2014, 127: 1643-1651.
[28] SHI R L, LI H, TONG Y P, JING R L, ZHANG F S, ZOU C Q. Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant Soil, 2008, 306: 95-104.
[29] HAO Y, VELU G, PEÑA R, SINGH S, SINGH R. Genetic loci associated with high grain zinc concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Molecular Breeding, 2014, 34: 1893-1902.
[30] OH B C, CHOI W C, PARK S, KIM Y O, OH T K. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Applied Microbiology and Biotechnology, 2004, 63: 362-372.
[31] GUTTIERI M J, BOWEN D, DORSH J A, RABOY V, SOUZA E. Identification and characterization of a low phytic acid wheat. Crop Science, 2004, 44: 418-424.
[32] MAUGENEST S, MARTINEZ I, GODIN B, PEREZ P, LESCURE A M. Structure of two maize phytase genes and their spatio-temporal expression during seedling development. Plant Molecular Biology, 1999, 39: 503-514.
[33] WYSS M, PASAMONTES L, FRIEDLEIN A, REMY R, TESSIER M, KRONENBERGER A, MIDDENDORF A, LEHMANN M, SCHNOEBELEN L, RÓTHLISBERGER U, KUSZNIR E, WAHL G, MULLER F, LAHM H W, VOGEL K, VAN LOON A P G M. Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Applied and Environmental Microbiology, 1999, 65: 359-366.
[34] 李颖睿, 陈茹梅, 阎俊, 何中虎, 张勇. 黄淮冬麦区小麦品种植酸含量与植酸酶活性分析. 作物学报, 2014, 40: 329-336.
LI Y R, CHEN R M, YAN J, HE Z H, ZHANG Y. Variability of phytate content and phytase activity among wheat cultivars from the Yellow and Huai River Valleys. Acta Agronomic Sinica, 2014, 40: 329-336. (in Chinese)
[35] RAM S, VERMA A, SHARMA S. Large variability exits in phytase levels among Indian wheat varieties and synthetic hexaploids. Journal of Cereal Science, 2010, 52: 486-490.
[36] LAFIANDRA D, RICCARDI G, SHEWRY P R. Improving creeal grain carbohydrates for diet and health. Journal of Cereal Science, 2014, 59: 312-326.
[37] RAIGOND P, EZEKIEL R, RAIGOND B. Resistant starch in food: a review. Journal of Science of Food and Agriculture, 2015, 95: 1968-1978.
[38] CHAMP M, LANGKILDE A M, BROUNS F, KETTLITZ B, BAIL-COLLET Y L. Advances in dietary fibre characterisation: 2. Consumption, chemistry, physiology and measurement of resistant starch; implications for health and food labelling. Nutrition Research Reviews, 2003, 16: 143-161.
[39] RAHMAN S, BIRD A, REGINA A, LI Z Y, RAL J P, McMAUGH S, TOPPING D, MORELL M. Resistant starch in cereal: Exploiting genetic engineering and genetic variation. Journal of Cereal Science, 2007, 46: 251-260.
[40] YAMAMORI M, QUYNH N T. Differential effects of Wx-A1, -B1 and -D1 protein deficiencies on apparent amylose content and starch pasting properties in common wheat. Theoretical and Applied Genetics, 2000, 100: 32-38.
[41] KONIK-ROSE C, THISTLETON J, CHANVRIER H, TAN I, HALLEY P, GIDLEY A, RAHMAN S, MORELL M, LI Z. Effects of starch synthase Ⅱa gene dosage on grain, protein and starch in endosperm of wheat. Theoretical and Applied Genetics, 2007, 115: 1053-1065.
[42] ROBERTS J, JONES G P, RUTSIHAUSER I H E, BIRKETT A, GIBBONS C. Resistant starch in the Australian diet. Nutrion and Dietetics, 2004, 61: 98-104.
[43] REGINA A, BIRD A, TOPPING D, BOWDEN S, FREEMAN J, BARSBY T, KOSAR-HASHEMI B, LI Z, RAHMAN S, MORELL M. High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proceedings of the National Academy of Science of the USA, 2006, 103: 3546-3551.
[44] MORELL M K, KOSAR-HASHEMI B, CMIEL M, SAMUEL M S, CHANDLER P, RAHMAN S, BULEON A, BATEY I L, LI Z. Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. The Plant Journal, 2003, 34: 173-185.
[45] NUGENT A P. Health properties of resistant starch. Nutrition Bulletin, 2005, 30: 27-54.
[46] SARIS W H, ASP N G, BJÓRCK I, BLAAK E, BORNET F, BROUNS F, FRAYN K N, FÜRST P, RICCARDI G, ROBERFROID M, VOGEL M. Functional food science and substrate metabolism. British Journal of Nutrition, 1998, 80: S47-S75.
[47] BROEKAERT W F, COURTIN C M, VERBEKE K, VAN DE WIELE T, VERSTRAETE W, DELCOUR J A. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan- oligosaccharides, and xylooligosaccharides. Critical Reviews in Food Science and Nutrition, 2011, 51: 178-194.
[48] SAULNIER L, SADO P E, BRANLARD G, CHARMET G, GUILLON F. Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. Journal of Cereal Science, 2007, 46: 261-281.
[49] ANNINSON G. Relationship between the concentrations of soluble non-starch polysaccharides and the apparent metabolisable energy of wheat assayed in broiler chickens. Journal of Agricultural and Food Chemistry, 1991, 39: 1252-1256.
[50] ENGLYST H N, QUIGLEY M E, HUDSON G J. Determination of dietary fibre as non-starch polysaccharides with gas-liquid chromatographic, high-performance liquid chromatographic or spectrophotometric measurement of constituent sugars. Analyst, 1994, 119: 1497-1509.
[51] KISZONAS A M, COURTIN C M, MORRIS C F. A critical assessment of the quantification of wheat grain arabinoxylans using a phloroglucinol colorimetric assay. Cereal Chemistry, 2012, 89: 143-150.
[52] GEBRUERS K, DORNEZ E, BOROS D, DYNKOWSKA W, BEDÓ Z, RAKSZEGI M, DELCOUR J A, COUTIN C M. Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry, 2008, 56: 9740-9749.
[53] FINNIE S, BETTGE A, MORRIS C. Influence of cultivar and environment on water-soluble and water-insoluble arabinoxylans in soft wheat. Cereal Chemistry, 2006, 83: 617-623.
[54] DORNEZ E, GEBRUERS K, JOYE I J, DE KETELAERE B, LENARTZ J, MASSAUX C, BODSON B, DELCOUR J A, COURTIN C M. Effects of genotype, harvest year and genotype- by-harvest year interactions on arabinoxylan, endoxylanase activity and endoxylanase inhibitor levels in wheat kernels. Journal of Cereal Science, 2008, 47: 180-189.
[55] LI S, MORRIS C F, BETTGE A D. Genotype and environment variation for arabinoxylans in hard winter and spring wheats of the U.S. Pacific Northwest. Cereal Chemistry, 2009, 86: 88-95.
[56] MARTINANT J P, BILLOT A, BOUGUENNEC A, CHARMET G, SAULNIER L, BRANLARD G. Genetic and environmental variations in water-extractable arabinoxylans content and flour extract viscosity. Journal of Cereal Science, 1999, 30: 45-48.
[57] NGUYEN V L, HUYNH B L, WALLWORK H, STANGOULIS J. Identification of quantitative trait loci for grain arabinoxylan concentration in bread wheat. Crop Science, 2011, 51: 1143-1150.
[58] MARTINANT J, CADALEN T, BILLOT A, CHARTIER S, LEROY P, BERNARD M, SAULNIER L, BRANLARD G. Genetic analysis of water-extractable arabinoxylans in bread wheat endosperm. Theoretical and Applied Genetics, 1998, 97: 1069-1075.
[59] QURAISHI U M, ABROUK M, BOLOT S, PONT C, THROUDE M, GUILHOT N, CONFOLENT C, BORTOLINI F, PRAUD S, MURIGNEUX A, CHARMET G, SALSE J. Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Functional and Integrative Genomics, 2009, 9: 473-484.
[60] QURAISHI U M, MURAT F, ABROUK M, PONT C, CONFOLENT C, OURY F X, WARD J, BOROS D, GEBRUERS K, DELCOUR J A. Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Functional and Integrative Genomics, 2011, 11: 71-83.
[61] CHARMET G, MASOOD-QURAISHI U, RAVEL C, ROMEUF I, BALFOURIER F, PERRETANT M, JOSEPH J, RAKSZEGI M, GUILLON F, SADO P. Genetics of dietary fibre in bread wheat. Euphytica, 2009, 170: 155-168.
[62] YANG L, ZHAO D H, YAN J, ZHANG Y L, XIA X C, TIAN Y B, HE Z H, ZHANG Y. QTL mapping of grain arabinoxylan contents in common wheat using a recombinant inbred line population. Euphytica, 2016, 208: 205-214.
[63] BORDES J, RAVEL C, LE GOUIS J, LAPIERRE A, CHARMET G, BALFOURIER F. Use of a global wheat core collection for association analysis of flour and dough quality traits. Journal of Cereal Science, 2011, 54: 137-147.
[64] MATTILA P, PIHLAVA J M, HELLSTRÖM J. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. Journal of Agricultural and Food Chemistry, 2005, 53: 8290-8295.
[65] DINELLI G, CARRETERO A S, DI S R, MAROTTI I, FU S, BENEDETTELLI S, GHISELLI L, GUTI?RREZ A F. Determination of phenolic compounds in modern and old varieties of durum wheat using liquid chromatography coupled with time-of-flight mass spectrometry. Journal of Chromatography A, 2009, 1216: 7229-7240.
[66] IRMAK S, JONNALA R S, MACRITCHIE F. Effect of genetic variation on phenolic acid and policosanol contents of Pegaso wheat lines. Journal of Cereal Science, 2008, 48: 20-26.
[67] ZHANG Y, WANG L, YAO Y, YAN J, HE Z H. Phenolic acid profiles of Chinese wheat cultivars. Journal of Cereal Science 2012, 56: 629-635.
[68] MOORE J, LIU J G, ZHOU K Q, YU L L. Effects of genotype and environment on the antioxidant properties of hard winter wheat bran. Journal of Agricultural and Food Chemistry, 2006, 54: 5313-5322.
[69] MA D, SUN D, ZUO Y, WANG C, ZHU Y, GUO T. Diversity of antioxidant content and its relationship to grain color and morphological characteristics in winter wheat grains. Journal of Integrative Agriculture, 2014, 13: 1258-1267.
[70] DALY L E, KIRK P N, MOLLEY A, WEIR D G, SCOTT J M. Folate levels and neural tube defects. The Journal of the American Medical Association, 1995, 274: 1698-1702.
[71] PIIRONEN V, EDELMANN M, KARILUOTO S, BEDO Z. Folate in wheat genotypes in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry, 2008, 56: 9726-9731.
[72] ERNSTRON J D. Diet, neurochemicals and mental energy. Nutrition Reviews, 2001, 59: 22-24.
[73] NURMI T, NYSTRO L, EDELMANN M, LAMPI A M, PIIRONEN V. Phytosterols in wheat genotypes in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry, 2008, 56: 9710-9715.
[74] LAMPI A M, NURMI T, OLLILAINEN V, PIIRONEN V. Tocopherols and tocotrienols in wheat genotypes in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry, 2008, 56: 9716-9721.
[75] KUCEK L K, VEENSTRA L D, AMNUAYCHEEWA P, SORRELLS M E. A grounded guide to gluten: how modern genotypes and processing impact wheat sensitivity. Comprehensive Reviews in Food Science and Food Safety, 2015, 14: 285-302.
[76] JACKSON J R, EATON W W, CASCELLA N G, FASANO A, KELLY D L. Neurologic and psychiatric manifestations of celiac disease and gluten sensitivity. Psychiatric Quarterly, 2012, 83: 91-102.
[77] VINCENTINI O, BORRELLI O, SILANO M, GAZZA L, POGNA N, LUCHETTI R, DE VINCENZI M. T-cell response to different cultivars of farro wheat, Triticum turgidum ssp. dicoccum, in celiac disease patients. Clinical Nutrition, 2009, 28: 272-277.
[78] WIESER H, SEILMEIER W, BELITZ H D. Quantitative determination of gliadin subgroups from different wheat cultivars. Journal of Cereal Science, 1994, 19: 149-155.
[79] GIL-HUMANES J, PISTÓN F, TOLLEFSEN S, SOLLID L M, BARRO F. Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference. Proceedings of the National Academy of Science of the USA, 2010, 107: 17023-17028.
[80] HISCHENHUBER C, CREVEL R, JARRY B, M?KI M, MONERET- VAUTRIN D A, ROMANO A, TRONCONE R, WARD R. Review article: safe amounts of gluten for patients with wheat allergy or coeliac disease. Alimentary Pharmacology & Therapeutics, 2006, 23: 559-575.
[81] SEILMEIER W, VALDEZ I, MENDEZ E, WIEISER H. Comparative investigation of gluten proteins from different wheat species II. characterization of ω-gliadins. European Food Research and Technology, 2001, 212: 355-363.
[82] LUPI R, MASCI S, ROGNIAUX H, TRANQUET O, BROSSARD C, LAFIANDRA D, MONERET-VAUTRIN D A, DENERY-PAPINI S, LARR? C. Assessment of the allergenicity of soluble fractions from GM and commercial genotypes of wheats. Journal of Cereal Science, 2014, 60: 179-186.
[83] ALTENBACH S B, ALLEN P V. Transformation of the US bread wheat “Butte 86” and silencing of omega-5 gliadin genes. GM Crops, 2011, 2: 66-73.
[84] HAMMED A. Hulled wheats: a review of nutritional properties and processing methods. Cereal Chemistry, 2014, 91: 97-104.
[85] BAI G H, SHANER G. Management and resistance in wheat and barley to Fusarium head blight. Annual Review of Phytopathology, 2004, 42: 135-161.
[86] 史建荣, 刘馨, 仇剑波, 祭芳, 徐剑宏, 董飞, 殷宪超, 冉军舰. 小麦中镰刀菌毒素脱氧雪腐镰刀菌烯醇污染现状与防控研究进展. 中国农业科学, 2014, 47: 3641-3654.
SHI J R, LIU X, QIU J B, CAI F, XU J H, DONG F, YIN X C, RAN J J. Deoxynivalenol contamination in wheat and its management. Scientia Agricutra Sinica, 2014, 47: 3641-3654. (in Chinese)
[87] BUERSTMAYR H, BAN T, ANDERSON J A. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breeding, 2009, 128: 1-26.
[88] LI F Q, WANG W, MA J J, YU C C, LIN X H, YAN W X. Natural occurrence of masked deoxynivalenol in Chinese wheat and wheat-based products during 2008-2011. World Mycotoxin Journal, 2012, 5: 221-230.
[89] GILBERT J, PASCALE M. Analytical methods for mycotoxins in the wheat chain. Mycotoxin Reduction in Grain Chains: John Wiley & Sons, Ltd; 2014: 169-188.
[90] PEIRIS K H S, PUMPHREY M O, DONG Y, MAGHIRANG E B, BERZONSKY W, DOWELL F E. Near-infrared spectroscopic method for identification of fusarium head blight damage and prediction of deoxynivalenol in single wheat kernels. Cereal Chemistry, 2010, 87: 511-517.
[91] HE X, SINGH P K, SCHLANG N, DUVEILLER E, DREISIGACKER S, PAYNE T, HE Z. Characterization of Chinese wheat germplasm for resistance to Fusarium head blight at CIMMYT, Mexico. Euphytica, 2014, 195: 383-395.
[92] 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003.
ZHUANG Q S. Wheat Improvement and Pedigree Analysis in Chinese Wheat Cultivars. Beijing: China Agriculture Press, 2003. (in Chinese)
[93] LIU S Y, HALL M D, GRIFFEY C A, McKENDRY A L. Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Science, 2009, 49: 1955-1968.
[94] CUTHBERT P A, SOMERS D J, THOMAS J, CLOUTIER S, BRUL?-BABEL A. Fine mapping Fhb1, a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2006, 112: 1465-1472.
[95] CUTHBERT P A, SOMERS D J, BRUL?-BABEL A. Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2007, 114: 429-437.
[96] QI L L, PUMPHREY M O, FRIEBE B, CHEN P D, GILL B S. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theoretical and Applied Genetics, 2008, 117: 1155-1166.
[97] XUE S, LI G Q, JIA H Y, XU F, LIN F, TANG M Z, WANG Y, AN X, XU H B, ZHANG L X, KONG Z X, MA Z Q. Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2010, 121: 147-156.
[98] XUE S, XU F, TANG M, ZHOU Y, LI G, AN X, LIN F, XU H, JIA H, ZHANG L, KONG Z, MA Z. Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 123: 1055-1063.
[99] GUO J, ZHANG X, HOU Y, CAI J, SHEN X, ZHOU T, XU H, OHM H W, WANG H, LI A, HAN F, WANG H, KONG L. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker- assisted selection. Theoretical and Applied Genetics, 2015, 128: 2301-2316.
[100] HOREVAJ P, BROWN-GUEDIRA G, MILUS E A. Resistance in winter wheat lines to deoxynivalenol applied into florets at flowering stage and tolerance to phytotoxic effects on yield. Plant Pathology, 2012, 61: 925-933.
[101]程顺和, 张勇, 别同德, 高德荣, 张伯桥. 中国小麦赤霉病的危害及抗性遗传改良. 江苏农业学报, 2012, 5: 938-942.
CHEN S H, ZHANG Y, BIE T D, GAO D R, ZHANG B Q. Damage of wheat Fusarium head blight epidemics and genetic improvement of wheat for scab resistance in China. Jiangsu Journal of Agricultural Sciences, 2012, 5: 938-942. (in Chinese)
[102]马鸿翔, 陆维忠. 小麦赤霉病抗性改良研究进展. 江苏农业学报, 2010, 1: 197-203.
MA H X, LU W Z. Progress on genetic improvement for Fusarium head blight in wheat. Jiangsu Journal of Agricultural Sciences, 2010, 1: 197-203. (in Chinese)
[103] PESTKA J J, SMOLINSKI A T. Deoxynivalenol: toxicology and potential effects on humans. Journal of Toxicology and Environmental Health-part B, 2005, 8: 39-69.
[104] KUSHIRO M. Effects of milling and cooking processes on the deoxynivalenol content in wheat. International Journal of Molecular Sciences, 2008, 9: 2127-2145.
[105] ZHANG H, WANG B. Fate of deoxynivalenol and deoxynivalenol- 3-glucoside during wheat milling and Chinese steamed bread processing. Food Control, 2014, 44: 86-91. |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[5] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[6] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[7] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[8] | 刘硕,张慧,高志源,许吉利,田汇. 437个小麦品种钾收获指数的变异特征[J]. 中国农业科学, 2022, 55(7): 1284-1300. |
[9] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[10] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[11] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[12] | 蔡苇荻,张羽,刘海燕,郑恒彪,程涛,田永超,朱艳,曹卫星,姚霞. 基于成像高光谱的小麦冠层白粉病早期监测方法[J]. 中国农业科学, 2022, 55(6): 1110-1126. |
[13] | 宗成, 吴金鑫, 朱九刚, 董志浩, 李君风, 邵涛, 刘秦华. 添加剂对农副产物和小麦秸秆混合青贮发酵品质的影响[J]. 中国农业科学, 2022, 55(5): 1037-1046. |
[14] | 马鸿翔, 王永刚, 高玉姣, 何漪, 姜朋, 吴磊, 张旭. 小麦抗赤霉病育种回顾与展望[J]. 中国农业科学, 2022, 55(5): 837-855. |
[15] | 冯子恒,宋莉,张少华,井宇航,段剑钊,贺利,尹飞,冯伟. 基于无人机多光谱和热红外影像信息融合的小麦白粉病监测[J]. 中国农业科学, 2022, 55(5): 890-906. |
|