中国农业科学 ›› 2026, Vol. 59 ›› Issue (1): 41-56.doi: 10.3864/j.issn.0578-1752.2026.01.004

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

基于无人机多源影像融合的水稻籽粒蛋白质含量估测

费耀莹1(), 王迪2, 唐伟杰3,4, 郭彩丽1, 张小虎1, 邱小雷1, 程涛1, 姚霞1,4, 江冲亚1, 朱艳1, 曹卫星1, 郑恒彪1,4,*()   

  1. 1 南京农业大学农学院/国家信息农业工程技术中心/智慧农业教育部工程研究中心/农业农村部农作物系统分析与决策重点实验室/江苏省信息农业重点实验室,南京 210095
    2 江苏徐淮地区淮阴农业科学研究所,江苏淮安 223001
    3 江苏省农业科学院种质资源与生物技术研究所,南京 210014
    4 生物育种钟山实验室,南京 210014
  • 收稿日期:2025-06-12 接受日期:2025-10-22 出版日期:2026-01-07 发布日期:2026-01-07
  • 通信作者:
    郑恒彪,E-mail:
  • 联系方式: 费耀莹,E-mail:faye09010618@163.com。
  • 基金资助:
    国家重点研发计划(2022YFD2001100); 钟山育种实验室项目(ZSBBL-KY2023-05); 江苏省青年科技人才托举工程(JSTJ-2024-429)

Estimation of Rice Grain Protein Content Using Fusion Imagery from UAV-based Multi-Sensors

FEI YaoYing1(), WANG Di2, TANG WeiJie3,4, GUO CaiLi1, ZHANG XiaoHu1, QIU XiaoLei1, CHENG Tao1, YAO Xia1,4, JIANG ChongYa1, ZHU Yan1, CAO WeiXing1, ZHENG HengBiao1,4,*()   

  1. 1 College of Agriculture, Nanjing Agricultural University/National Engineering and Technology Center for Information Agriculture/ Engineering Research Center of Smart Agriculture, Ministry of Education/Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs/Jiangsu Key Laboratory for Information Agriculture, Nanjing 210095
    2 Huaiyin Institute of Agricultural Sciences in Xuhuai Region of Jiangsu, Huaian 223001, Jiangsu
    3 Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014
    4 Zhongshan Biological Breeding Laboratory, Nanjing 210014
  • Received:2025-06-12 Accepted:2025-10-22 Published:2026-01-07 Online:2026-01-07

摘要:

【目的】水稻籽粒蛋白质含量(grain protein content,GPC)是衡量稻米品质和商品价值的重要指标。建立快速、无损的水稻GPC估测方法,旨在为作物智慧育种提供理论依据和技术支持。【方法】采用无人机搭载RGB相机和多光谱相机,于2022—2023年获取522份水稻育种材料抽穗-成熟期的RGB和多光谱影像及实测GPC数据。利用Gram-Schmidt图像融合方法对RGB和多光谱影像进行处理得到融合影像,并结合基于原始多光谱图像提取的光谱特征和纹理特征,采用随机森林(random forest,RF)、极限梯度提升机(extreme gradient boosting,XGBoost)、梯度提升回归(gradient boosting regression,GBR)3种机器学习回归算法构建GPC估测模型。【结果】RGB影像的红波段包含更丰富的图像信息,经过该波段融合后的植被指数与GPC的相关性均高于由原始多光谱影像计算的植被指数。均值纹理(Mean)在纹理指数构建中出现频率最高(占比63.16%),其中MEA560-MEA840指数与不同类型水稻的GPC具有一定的相关性(淮安常规粳稻:|r2|=0.28;如皋杂交粳稻:|r2|=0.20)。以多光谱图像特征、纹理特征和融合图像特征作为输入参数组合构建的水稻GPC估测模型,在抽穗期(R2 cal=0.64)和成熟期(R2 cal=0.70)的精度高于灌浆期模型(R2 cal=0.53)。相较于使用原始影像特征,结合融合影像特征提高了GPC的估测精度(ΔR2 cal=0.08-0.26)。RF构建的年际模型精度高于XGBoost和GBR模型(RF:R2 val=0.74,RMSE=0.21%;XGBoost:R2 val=0.58,RMSE=0.23%;GBR:R2 val=0.42,RMSE=0.23%)。【结论】结合无人机影像融合技术和机器学习方法能有效提高水稻育种材料GPC的估测精度,研究结果可为大规模水稻品质参数精准估算提供理论参考和有效途径。

关键词: 无人机, 多源影像, 特征融合, 机器学习, 水稻, 籽粒蛋白质含量, 无损估测

Abstract:

【Objective】Grain protein content (GPC) is a crucial indicator for evaluating rice quality and its commercial value. Establishing a rapid and non-destructive method for estimating rice GPC was established, so as to provide theoretical foundations and technical support for smart breeding and precision crop management. 【Method】This study employed a drone equipped with both an RGB camera and a multispectral camera to collect RGB and multispectral imagery, along with ground-measured grain protein content (GPC) data, from the heading to maturity stages of 522 rice breeding material accessions from 2022 to 2023. The Gram-Schmidt image fusion method was applied to process the RGB and multispectral images for generating fused images. Spectral and texture features extracted from the original multispectral images were combined with fused image features, and three machine learning regression algorithms—Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Gradient Boosting Regression (GBR)—were employed to construct GPC estimation models. 【Result】The R-band of the RGB images contained richer image information. Vegetation indices derived from the fused R-band exhibited higher correlations with GPC than those calculated from the original multispectral data. The mean texture (Mean) appeared most frequently in texture index construction (accounting for 63.16%), with the MEA560-MEA840 index showing certain correlations with GPC across different rice types (Huaian conventional japonica: |r2|=0.28; Rugao hybrid japonica: |r2|=0.20). Using a combination of multispectral image features, texture features, and fused image features as input parameters, the GPC estimation models for rice breeding materials achieved higher accuracy at the heading stage (R2 cal=0.64) and maturity stage (R2 cal=0.70) than at the filling stage model (R2 cal=0.53). Incorporating fused image features improved GPC estimation accuracy (ΔR2 cal=0.08-0.26) over using original image features. The interannual model of RF outperformed those of XGBoost and GBR in accuracy(RF: R2 val=0.74, RMSE=0.21%; XGBoost: R2 val=0.58, RMSE=0.23%; GBR: R2 val=0.42, RMSE=0.23%). 【Conclusion】The integration of UAV image fusion technique and machine learning methods could effectively enhance the estimation accuracy of the grain protein content (GPC) in rice breeding materials. These findings provided a theoretical reference and practical approaches for the precise estimation of rice quality parameters on a large scale.

Key words: unmanned aerial vehicle (UAV), multi-source imagery, feature fusion, machine learning, rice, grain protein content (GPC), non-destructive estimation