[1] |
何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018, 8(1): 107-114.
doi: 10.11923/j.issn.2095-4050.cjas2018-1-107
|
|
HE Z H, ZHUANG Q S, CHENG S H, YU Z W, ZHAO Z D, LIU X. Wheat production and technology improvement in China. Journal of Agriculture, 2018, 8(1): 107-114. (in Chinese)
doi: 10.11923/j.issn.2095-4050.cjas2018-1-107
|
[2] |
|
|
GUO S B, ZHANG F L, ZHANG Z T, ZHOU L T, ZHAO J, YANG X G. The possible effects of global warming on cropping systems in China XIV: Distribution of high-stable-yield zones and agro- meteorological disasters of soybean in Northeast China. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780. doi: 10.3864/j.issn.0578-1752.2022.09.006. (in Chinese)
|
[3] |
LOBELL D B, SCHLENKER W, COSTA-ROBERTS J. Climate trends and global crop production since 1980. Science, 2011, 333(6042): 616-620.
doi: 10.1126/science.1204531
pmid: 21551030
|
[4] |
ASSENG S, EWERT F, MARTRE P, RÖTTER R P, LOBELL D B, CAMMARANO D, KIMBALL B A, OTTMAN M J, WALL G W, WHITE J W, REYNOLDS M P, ALDERMAN P D, PRASAD P V V, AGGARWAL P K, ANOTHAI J, BASSO B, BIERNATH C, CHALLINOR A J, DE SANCTIS G, DOLTRA J, FERERES E, GARCIA-VILA M, GAYLER S, HOOGENBOOM G, HUNT L A, IZAURRALDE R C, JABLOUN M, JONES C D, KERSEBAUM K C, KOEHLER A K, MÜLLER C, NARESH KUMAR S, NENDEL C, O’LEARY G, OLESEN J E, PALOSUO T, PRIESACK E, EYSHI REZAEI E, RUANE A C, SEMENOV M A, SHCHERBAK I, STÖCKLE C, STRATONOVITCH P, STRECK T, SUPIT I, TAO F, THORBURN P J, WAHA K, WANG E, WALLACH D, WOLF J, ZHAO Z, ZHU Y. Rising temperatures reduce global wheat production. Nature Climate Change, 2015, 5(2): 143-147.
|
[5] |
卢云泽. 小麦灌浆期旗叶响应高温胁迫的蛋白组学与热响应关键基因HSP90的全基因组分析[D]. 杨凌: 西北农林科技大学, 2018.
|
|
LU Y Z. Proteomics and genome-wide analysis of HSP90 a key gene for heat response in flag leaves of wheat during grain filling stage[D]. Yangling: Northwest A&F University, 2018. (in Chinese)
|
[6] |
刘秀坤, 韩冉, 李晓明, 解树斌, 李法计, 陈亚鹏, 翟胜男, 李豪圣, 刘建军, 赵振东, 张玉梅, 曹新有. 灌浆期小麦旗叶在高温胁迫下的转录组分析. 山东农业科学, 2022, 54(10): 1-10, 16.
|
|
LIU X K, HAN R, LI X M, XIE S B, LI F J, CHEN Y P, ZHAI S N, LI H S, LIU J J, ZHAO Z D, ZHANG Y M, CAO X Y. Transcriptome analysis of wheat flag leaves under high temperature stress at grain-filling stage. Shandong Agricultural Sciences, 2022, 54(10): 1-10, 16. (in Chinese)
|
[7] |
LIU Y F, WANG W. Characterization of the GRAS gene family reveals their contribution to the high adaptability of wheat. PeerJ, 2021, 9: e10811.
|
[8] |
KUMAR B, BHALOTHIA P. Evolutionary analysis of GRAS gene family for functional and structural insights into hexaploid bread wheat (Triticum aestivum). Journal of Biosciences, 2021, 46: 45.
|
[9] |
HIRSCH S, OLDROYD G E D. GRAS-domain transcription factors that regulate plant development. Plant Signalling & Behavior, 2009, 4(8): 698-700.
|
[10] |
MISHRA S, CHAUDHARY R, PANDEY B, SINGH G, SHARMA P. Genome-wide identification and expression analysis of the GRAS gene family under abiotic stresses in wheat (Triticum aestivum L.). Scientific Reports, 2023, 13(1): 18705.
|
[11] |
BOLLE C, KONCZ C, CHUA N H. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes & Development, 2000, 14(10): 1269-1278.
|
[12] |
TORRES-GALEA P, HIRTREITER B, BOLLE C. Two GRAS proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, function cooperatively in phytochrome A signal transduction. Plant Physiology, 2013, 161(1): 291-304.
|
[13] |
GAO M J, LI X, HUANG J, GROPP G M, GJETVAJ B, LINDSAY D L, WEI S, COUTU C, CHEN Z X, WAN X C, HANNOUFA A, LYDIATE D J, GRUBER M Y, CHEN Z J, HEGEDUS D D. SCARECROW-LIKE15 interacts with HISTONE DEACETYLASE19 and is essential for repressing the seed maturation programme. Nature Communications, 2015, 6: 7243.
|
[14] |
WU J, SUN L Q, SONG Y, BAI Y, WAN G Y, WANG J X, XIA J Q, ZHANG Z Y, ZHANG Z S, ZHAO Z, XIANG C B. The OsNLP3/4- OsRFL module regulates nitrogen-promoted panicle architecture in rice. New Phytologist, 2023, 240(6): 2404-2418.
|
[15] |
LIU Y D, HUANG W, XIAN Z Q, HU N, LIN D B, REN H, CHEN J X, SU D D, LI Z G. Overexpression of SlGRAS40 in tomato enhances tolerance to abiotic stresses and influences auxin and gibberellin signaling. Frontiers in Plant Science, 2017, 8: 1659.
|
[16] |
ZUO Z F, KANG H G, PARK M Y, JEONG H, SUN H J, SONG P S, LEE H Y. Zoysia japonica MYC type transcription factor ZjICE 1 regulates cold tolerance in transgenic Arabidopsis. Plant Science, 2019, 289: 110254.
|
[17] |
WANG T T, YU T F, FU J D, SU H G, CHEN J, ZHOU Y B, CHEN M, GUO J, MA Y Z, WEI W L, XU Z S. Genome-wide analysis of the GRAS gene family and functional identification of GmGRAS37 in drought and salt tolerance. Frontiers in Plant Science, 2020, 11: 604690.
|
[18] |
FODE B, SIEMSEN T, THUROW C, WEIGEL R, GATZ C. The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress- inducible promoters. The Plant Cell, 2008, 20(11): 3122-3135.
|
[19] |
CHEN K M, LI H W, CHEN Y F, ZHENG Q, LI B, LI Z S. TaSCL14, a novel wheat (Triticum aestivum L.) GRAS gene, regulates plant growth, photosynthesis, tolerance to photooxidative stress, and senescence. Journal of Genetics and Genomics, 2015, 42(1): 21-32.
|
[20] |
LING L, LI M J, CHEN N Y, REN G L, QU L N, YUE H, WU X Y, ZHAO J. Genome-wide analysis and expression of the GRAS transcription factor family in Avena sativa. Genes, 2023, 14(1): 164.
|
[21] |
KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.
doi: 10.1093/molbev/msy096
pmid: 29722887
|
[22] |
席海秀, 艾可筠, 佟少明. 普通小麦幼苗叶肉细胞原生质体分离方法的优化. 生物技术通报, 2016, 32(4): 68-73.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.04.008
|
|
XI H X, AI K Y, TONG S M. The optimization of the isolation method for mesophyll protoplasts from common wheat seedlings. Biotechnology Bulletin, 2016, 32(4): 68-73. (in Chinese)
|
[23] |
曾润娴. 小麦TaBI-1.1基因的耐热功能验证和机理初步解析[D]. 杨凌: 西北农林科技大学, 2023.
|
|
ZENG R X. Verification of heat tolerance function and preliminary mechanism analysis of TaBI-1.1 gene in wheat[D]. Yangling: Northwest A&F University, 2023. (in Chinese)
|
[24] |
XU K, CHEN S J, LI T F, MA X S, LIANG X H, DING X F, LIU H Y, LUO L J. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biology, 2015, 15: 141.
doi: 10.1186/s12870-015-0532-3
pmid: 26067440
|
[25] |
SUN J H, XU J D, QU W R, HAN X L, QIU C, GAI Z S, ZHAI J T, QIN R, LIU H, WU Z H, LI Z J. Genome-wide analysis of R2R3- MYB transcription factors reveals their differential responses to drought stress and ABA treatment in desert poplar (Populus euphratica). Gene, 2023, 855: 147124.
|
[26] |
李永红, 魏玉香, 谷茂. 水杨酸预处理对鸡冠花幼苗热胁迫的生理效应. 西北植物学报, 2008, 28(11): 2257-2262.
|
|
LI Y H, WEI Y X, GU M. Physiological effect of salicylic acid pretreatment on heat stress of Celosia cristata. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(11): 2257-2262. (in Chinese)
|
[27] |
ZHANG H, ZHOU J F, KAN Y, SHAN J X, YE W W, DONG N Q, GUO T, XIANG Y H, YANG Y B, LI Y C, ZHAO H Y, YU H X, LU Z Q, GUO S Q, LEI J J, LIAO B, MU X R, CAO Y J, YU J J, LIN Y, LIN H X. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science, 2022, 376(6599): 1293-1300.
doi: 10.1126/science.abo5721
pmid: 35709289
|
[28] |
LIM S D, CHO H Y, PARK Y C, HAM D J, LEE J K, JANG C S. The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance. Journal of Experimental Botany, 2013, 64(10): 2899-2914.
doi: 10.1093/jxb/ert143
pmid: 23698632
|
[29] |
LAKRA N, NUTAN K K, DAS P, ANWAR K, SINGLA-PAREEK S L, PAREEK A. A nuclear-localized histone-gene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery. Journal of Plant Physiology, 2015, 176: 36-46.
doi: 10.1016/j.jplph.2014.11.005
pmid: 25543954
|
[30] |
HERRERA-VÁSQUEZ A, FONSECA A, UGALDE J M, LAMIG L, SEGUEL A, MOYANO T C, GUTIÉRREZ R A, SALINAS P, VIDAL E A, HOLUIGUE L. TGA class II transcription factors are essential to restrict oxidative stress in response to UV-B stress in Arabidopsis. Journal of Experimental Botany, 2021, 72(5): 1891-1905.
|