[1] |
LAL R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677): 1623-1627.
doi: 10.1126/science.1097396
pmid: 15192216
|
[2] |
SCHLESINGER W H. Biogeochemistry: An Analysis of Global Change. 2nd ed. San Diego, Calif.: Academic Press. 1997.
|
[3] |
BELAY-TEDLA A, ZHOU X H, SU B, WAN S Q, LUO Y Q. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil Biology and Biochemistry, 2009, 41(1): 110-116.
|
[4] |
|
|
ZHANG F F, MA N B, YUE S C, LI S Q. Evaluation of nitrogen supply capacity of paddy and wheat rotation soil in Hanzhong Basin by different determination methods. Scientia Agricultura Sinica, 2020, 53(19): 3996-4009. doi: 10.3864/j.issn.0578-1752.2020.19.013. (in Chinese)
|
[5] |
MANZONI S, PORPORATO A. Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biology and Biochemistry, 2009, 41(7): 1355-1379.
|
[6] |
|
|
GAI X P, LIU H B, YANG B, WANG H Y, ZHAI L M, LEI Q L, WU S X, REN T Z. Responses of crop yields, soil carbon and nitrogen stocks to additional application of organic materials in different fertilization years. Scientia Agricultura Sinica, 2019, 52(4): 676-689. doi: 10.3864/j.issn.0578-1752.2019.04.009. (in Chinese)
|
[7] |
张方方, 岳善超, 李世清. 土壤有机碳组分化学测定方法及碳指数研究进展. 农业环境科学学报, 2021, 40(2): 252-259.
|
|
ZHANG F F, YUE S C, LI S Q. Chemical methods to determine soil organic carbon fractions and carbon indexes: a review. Journal of Agro-Environment Science, 2021, 40(2): 252-259. (in Chinese)
|
[8] |
COTRUFO M, LAVALLEE J. Soil organic matter formation, persistence, and functioning: a synthesis of current understanding to inform its conservation and regeneration. Advances in Agronomy, 2021, 172: 1-50.
|
[9] |
SOKOL N W, SANDERMAN J, BRADFORD M A. Pathways of mineral-associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry. Global Change Biology, 2019, 25(1): 12-24.
doi: 10.1111/gcb.14482
pmid: 30338884
|
[10] |
梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论. 中国科学: 地球科学, 2021, 51(5): 680-695.
|
|
LIANG C, ZHU X F. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration. Scientia Sinica (Terrae), 2021, 51(5): 680-695. (in Chinese)
|
[11] |
BLAIR G J, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995, 46(7): 1459.
|
[12] |
焦欢, 李廷亮, 高继伟, 李彦, 何冰, 李顺. 培肥措施对复垦土壤轻重组有机碳氮的影响. 水土保持学报, 2018, 32(5): 208-213, 221.
|
|
JIAO H, LI T L, GAO J W, LI Y, HE B, LI S. Effects of fertilization on light and heavy fractions organic nitrogen in reclaimed soil. Journal of Soil and Water Conservation, 2018, 32(5): 208-213, 221. (in Chinese)
|
[13] |
宋雅菲. 农艺措施对冀北坝上土壤氮素形态及氮库管理指数的影响[D]. 张家口: 河北北方学院, 2019: 22-29.
|
|
SONG Y F. Effects of agronomic measures on soil nitrogen forms and nitrogen pool management index in Bashang, northern Hebei Province[D]. Zhangjiakou: Hebei North University, 2019: 22-29. (in Chinese)
|
[14] |
王开悦, 廖育林, 鲁艳红, 蔡岸冬, 张志伟, 陈旋, 秦晓波. 超级稻田碳氮库管理指数在等养分不同有机物料处理下的动态变化. 农业环境科学学报, 2023, 42(8): 1758-1767.
|
|
WANG K Y, LIAO Y L, LU Y H, CAI A D, ZHANG Z W, CHEN X, QIN X B. Dynamic changes in carbon and nitrogen pool management indexes in super rice fields treated with various organic materials and equal nutrients. Journal of Agro-Environment Science, 2023, 42(8): 1758-1767. (in Chinese)
|
[15] |
王晓娇, 齐鹏, 蔡立群, 陈晓龙, 谢军红, 甘慧炯, 张仁陟. 培肥措施对旱地农田产量可持续性及土壤有机碳库稳定性的影响. 草业学报, 2020, 29(10): 58-69.
doi: 10.11686/cyxb2020187
|
|
WANG X J, QI P, CAI L Q, CHEN X L, XIE J H, GAN H J, ZHANG R Z. Effects of alternative fertilization practices on components of the soil organic carbon pool and yield stability in rain-fed maize production on the Loess Plateau. Acta Prataculturae Sinica, 2020, 29(10): 58-69. (in Chinese)
|
[16] |
|
|
WANG H L, ZHANG X C, SONG S Y, MA Y F, YU X F. Regulation of whole field surface plastic mulching and double ridge-furrow planting on seasonal soil water loss and maize yield in rain-fed area of northwest Loess Plateau. Scientia Agricultura Sinica, 2013, 46(5): 917-926. doi: 10.3864/j.issn.0578-1752.2013.05.006. (in Chinese)
|
[17] |
LUO S S, ZHU L, LIU J L, BU L D, YUE S C, SHEN Y F, LI S Q. Sensitivity of soil organic carbon stocks and fractions to soil surface mulching in semiarid farmland. European Journal of Soil Biology, 2015, 67: 35-42.
|
[18] |
LIU N, LI Y Y, CONG P, WANG J, GUO W, PANG H C, ZHANG L. Depth of straw incorporation significantly alters crop yield, soil organic carbon and total nitrogen in the North China Plain. Soil and Tillage Research, 2021, 205: 104772.
|
[19] |
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
|
|
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
|
[20] |
濮超, 刘鹏, 阚正荣, 祁剑英, 马守田, 赵鑫, 张海林. 耕作方式及秸秆还田对华北平原土壤全氮及其组分的影响. 农业工程学报, 2018, 34(9): 160-166.
|
|
PU C, LIU P, KAN Z R, QI J Y, MA S T, ZHAO X, ZHANG H L. Effects of tillage and straw mulching on soil total nitrogen and its components in North China Plain. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 160-166. (in Chinese)
|
[21] |
BU L D, LIU J L, ZHU L, LUO S S, CHEN X P, LI S Q, LEE HILL R, ZHAO Y. The effects of mulching on maize growth, yield and water use in a semi-arid region. Agricultural Water Management, 2013, 123: 71-78.
|
[22] |
许强, 吴宏亮, 康建宏, 强力. 旱区砂田肥力演变特征研究. 干旱地区农业研究, 2009, 27(1): 37-41.
|
|
XU Q, WU H L, KANG J H, QIANG L. Study on evolution characteristics of sandy-field in arid region. Agricultural Research in the Arid Areas, 2009, 27(1): 37-41. (in Chinese)
|
[23] |
ZHOU L M, JIN S L, LIU C A, XIONG Y C, SI J T, LI X G, GAN Y T, LI F M. Ridge-furrow and plastic-mulching tillage enhances maize-soil interactions: opportunities and challenges in a semiarid agroecosystem. Field Crops Research, 2012, 126: 181-188.
|
[24] |
LEE J G, HWANG H Y, PARK M H, LEE C H, KIM P J. Depletion of soil organic carbon stocks are larger under plastic film mulching for maize. European Journal of Soil Science, 2019, 70(4): 807-818.
|
[25] |
ZHANG F F, LI S Q, YUE S C, SONG Q L. The effect of long-term soil surface mulching on SOC fractions and the carbon management index in a semiarid agroecosystem. Soil and Tillage Research, 2022, 216: 105233.
|
[26] |
|
|
WANG C H, LIU F, GAO J Y, ZHANG H F, XIE Y H, CAO H B, XIE J Y. The variation characteristics of soil organic carbon component content under nitrogen reduction and film mulching. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790. doi: 10.3864/j.issn.0578-1752.2022.19.008. (in Chinese)
|
[27] |
GAO Y H, XIE Y P, JIANG H Y, WU B, NIU J Y. Soil water status and root distribution across the rooting zone in maize with plastic film mulching. Field Crops Research, 2014, 156: 40-47.
|
[28] |
DONG Q G, YANG Y C, YU K, FENG H. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China. Agricultural Water Management, 2018, 201: 133-143.
|
[29] |
SHAHID M, NAYAK A K, PUREE C, TRIPATHI R, LAL B, GAUTAM P, BHATTACHARYYA P, MOHANTY S, KUMAR A, PANDA B B, KUMAR U, SHUKLA A K. Carbon and nitrogen fractions and stocks under 41 years of chemical and organic fertilization in a sub-humid tropical rice soil. Soil and Tillage Research, 2017, 170: 136-146.
|
[30] |
ZHANG F F, WEI Y N, BO Q F, TANG A, SONG Q L, LI S Q, YUE S C. Long-term film mulching with manure amendment increases crop yield and water productivity but decreases the soil carbon and nitrogen sequestration potential in semiarid farmland. Agricultural Water Management, 2022, 273: 107909.
|
[31] |
JILLING A, KEILUWEIT M, CONTOSTA A R, FREY S, SCHIMEL J, SCHNECKER J, SMITH R G, TIEMANN L, GRANDY A S. Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry, 2018, 139(2): 103-122.
|
[32] |
VILLARINO S H, TALAB E, CONTISCIANI L, VIDELA C, DI GERONIMO P, MASTRÁNGELO M E, GEORGIOU K, JACKSON R B, PIÑEIRO G. A large nitrogen supply from the stable mineral-associated soil organic matter fraction. Biology and Fertility of Soils, 2023, 59(7): 833-841.
|
[33] |
HEMINGWAY J D, ROTHMAN D H, GRANT K E, ROSENGARD S Z, EGLINTON T I, DERRY L A, GALY V V. Mineral protection regulates long-term global preservation of natural organic carbon. Nature, 2019, 570: 228-231.
|
[34] |
SOKOL N W, BRADFORD M A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geoscience, 2019, 12: 46-53.
|
[35] |
AUSTIN E E, WICKINGS K, MCDANIEL M D, ROBERTSON G P, GRANDY A S. Cover crop root contributions to soil carbon in a no-till corn bioenergy cropping system. GCB Bioenergy, 2017, 9(7): 1252-1263.
|
[36] |
KALLENBACH C M, FREY S D, GRANDY A S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications, 2016, 7: 13630.
doi: 10.1038/ncomms13630
pmid: 27892466
|
[37] |
ZHANG L, MENG Y, LI S Q, YUE S C. High-yield characteristics and root support of rain-fed maize under film mulching. Agronomy Journal, 2020, 112(3): 2115-2131.
|
[38] |
|
|
CAO H B, XIE J Y, LIU F, GAO J Y, WANG C H, WANG R J, XIE Y H, LI T L. Mineralization characteristics of soil organic carbon and its temperature sensitivity in wheat field under film mulching. Scientia Agricultura Sinica, 2021, 54(21): 4611-4622. doi: 10.3864/j.issn.0578-1752.2021.21.011. (in Chinese)
|
[39] |
ZHANG F F, SONG Q L, MA T, GAO N, HAN X K, SHEN Y F, YUE S C, LI S Q. Long-term maintenance of high yield and soil fertility with integrated soil-crop system management on the Loess Plateau. Journal of Environmental Management, 2024, 351: 119687.
|
[40] |
CHEN S D, ELRYS A S, YANG W Y, DU S W, HE M Q, CAI Z C, ZHANG J B, MÜLLER C. Soil recalcitrant but not labile organic nitrogen mineralization contributes to microbial nitrogen immobilization and plant nitrogen uptake. Global Change Biology, 2024, 30(4): e17290.
|