中国农业科学 ›› 2022, Vol. 55 ›› Issue (13): 2572-2583.doi: 10.3864/j.issn.0578-1752.2022.13.008

• 土壤肥料·节水灌溉·农业生态环境 • 上一篇    下一篇

中国土壤调查结果的地统计特征

张维理1(),傅伯杰2(),徐爱国1,杨鹏1,陈涛3,张认连1,史舟4,吴文斌1,李建兵5,冀宏杰1,刘峰6,雷秋良1,李兆君1,冯瑶1,李艳丽1,徐用兵1,裴玮1   

  1. 1中国农业科学院农业资源与农业区划研究所,北京 100081
    2中国科学院生态环境研究中心,北京 100085
    3西北农林科技大学,陕西杨凌 712100
    4浙江大学,杭州 310058
    5农业农村部耕地质量监测保护中心,北京 100125
    6中国科学院南京土壤研究所,南京 210008
  • 收稿日期:2021-09-02 接受日期:2021-10-18 出版日期:2022-07-01 发布日期:2022-07-08
  • 作者简介:张维理,Tel:010-82106217;E-mail: zhangweili@caas.cn。|傅伯杰,E-mail: bfu@mail.rcees.ac.cn
  • 基金资助:
    科技部科技基础性工作专项(2006FY120200);科技部科技基础性工作专项(2012FY112100)

Geostatistical Characteristics of Soil Data from National Soil Survey Works in China

ZHANG WeiLi1(),FU BoJie2(),XU AiGuo1,YANG Peng1,CHEN Tao3,ZHANG RenLian1,SHI Zhou4,WU WenBin1,LI JianBing5,JI HongJie1,LIU Feng6,LEI QiuLiang1,LI ZhaoJun1,FENG Yao1,LI YanLi1,XU YongBing1,PEI Wei1   

  1. 1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
    2Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085
    3Northwest A&F University, Yangling 712100, Shaanxi
    4Zhejiang University, Hangzhou 310058
    5Cultivated Land Quality Monitoring and Protection Center, Ministry of Agriculture and Rural Affairs, Beijing 100125
    6Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008
  • Received:2021-09-02 Accepted:2021-10-18 Online:2022-07-01 Published:2022-07-08

摘要:

【目的】我国于1979—1987年进行了第二次土壤普查(以下简称“二普”),2005—2017年进行了农田耕层土壤养分调查。两次调查均为地面采样量大的全国性调查。两次调查生成数据是我国目前最精细的土壤资源与质量时空数据。通过地统计检验方法,探讨我国在这两次调查中所获土壤质量数据的地统计检验特征,为这些数据用于表征土壤资源与质量时空分布状况,及其在其他行业和研究领域的应用提供参考。【方法】检验方法是在我国东、南、西、北、中不同地域选取7个代表性类型区,提取7片区在两次调查中获得的土壤剖面点和耕层采样点0—20 cm土层的土壤有机质含量。选择土壤有机质含量作为检验指标的原因之一是有机质含量是最重要土壤质量性状之一,其二该要素可量化表达。剖面点数据源于二普对典型土壤类型的剖面采样,采样特征为优先选取典型土壤类型,全国完成了10万个0—100 cm剖面分层采样、化验。经数据整合和多要素匹配,有6万个剖面点获得坐标。耕层采样点数据源于2005—2017年农田耕层养分调查,采样为网格化均衡分布的大样本量,全国完成了1 000万个有GPS定位坐标的耕层样本。每片区含土壤剖面点500—1 300个,耕层采样点50 000—250 000个。用普通克里格插值方法进行地统计分析和检验。对每片区剖面点和耕层采样点数据分别随机选取80%数据作为训练样本集建模,20%作为验证样本集。将验证样本预测值与实测值进行线性回归,计算R 2(决定系数)和RMSE(均方根误差),以此评价两组数据表达土壤要素空间分布特征的可靠性和误差。【结果】剖面数据的地统计检验显示,7片区二普剖面点数据表达的有机质含量分布状况可靠性均达极显著水平,但校验集预测值与实测值相关性较差,R 2值较低,为0.223—0.380,RMSE较高。2005—2017年耕层采样点数据地统计检验显示,通过网格化均衡分布和大样本量的地面采样,耕层采样点所获有机质含量分布图的可靠性和预测精度优于剖面点数据,R 2提高,RMSE下降。两组数据地统计结果还显示:尽管相隔30年,两时段调查展现的土壤有机质含量有一定变化,但两组数据反映的各片区土壤有机质含量空间分布总体规律相似。【结论】当土壤调查为网格化均衡分布的大样本量采样时,就表征土壤要素空间分布特征而言,其可靠性和精度较好;二普生成大比例尺土壤专题图数据(土壤图,有机质含量图,pH图,土壤氮、磷、钾养分含量图)和2005—2017年农田耕层养分调查数据均源于网格化均衡分布的大样本量地面调查,可靠性和精度优于二普剖面点数据。但剖面点含数据类别多,具有点坐标,也有可靠的土壤专题图表达,对了解多类别土壤要素空间分布特征极具价值。二普与农田耕层点养分调查间隔约30年,两时段数据有利于了解土壤质量时空演变。本研究还显示,获取精细土壤质量数据需要进行大样本量地面调查和采样,对于表征土壤类型、土体构造等稳定性要素而言,若地面采样量较小,将难以获得可靠性和精度优于二普的数据。从实际需求和我国已有工作基础考虑,今后土壤调查重点可考虑以土壤功能调查或缺区补漏调查为主。

关键词: 土壤调查, 地统计, 土壤有机质, 土壤质量, 可靠性检验, 数字土壤制图

Abstract:

【Objective】China carried out the second state soil survey from 1979 to 1987 and the soil nutrient investigation of farmland from 2005 to 2017. Both surveys covered the whole country with a huge amount of ground soil samplings. The data generated from the two surveys have become the most detailed spatial-temporal data for soil types and quality in China. The purpose of the study was to test and to evaluate the geostatistical characteristics of the data by geostatistical testing approach, so as to provide the reference for the use of these data to characterize the temporal and spatial distribution of soil features in different disciplines. 【Method】7 testing areas were selected to represent different regions in China. Soil organic matter (SOM) contents of 0-20 cm soil layer from soil profile sampled in 1979-1987 and from plough layer sampled in 2005-2017 were extracted from the corresponding data bases. The ground sampling for soil profiles in 1979-1987 was to give priority to typical soil types firstly and secondly to keep an evenly distributed sampling as possible. 100 000 soil profiles with about 1m soil deep were finally sampled. After integrated data processing and coordinate matching, 60 000 profiles obtained coordinates. Ground sampling for soil plough layer in 2005-2017 was in grid distribution. 10 000 000 plough layer soil samples with GPS positioning coordinates have been completed. For each testing area, the data set contained two groups, about 500-1 300 SOM values from soil profile data and 50 000-250 000 values from plough layer data. The data from two time groups of each testing data set were analyzed by ordinary Kriging approach separately. 80% of the data were randomly selected as the training sample set for modeling and 20% as the verification sample set. The linear regression between the predicted value and the measured value of the validation sample was carried out. R2 (coefficient of determination) and RMSE (root mean square error) were calculated to evaluate the reliability and uncertainty of the data sets in expressing the spatial distribution of the soil feature. 【Result】It was showed that the reliability of mapping SOM content by profile data of all of the 7 testing areas reached significant levels. However, the deviation between predicted values and measured values of the test data set was relatively great. The values of R2 were low, between 0.223-0.380 and RMSE were relatively high. Testing results by soil plough layer data sampled in 2005-2017 showed that through large sample size and grid sampling, the reliability and prediction accuracy of mapping SOM content were improved greatly, for R2 increased and RMSE decreased. The geostatistical test results of two periods with a time interval of 30 years showed that although there were some changes in the contents of soil organic matter, the overall spatial distribution of SOM content in each testing area expressed by the two data groups was similar. 【Conclusion】 The reliability and accuracy of soil maps were much better in terms of characterizing the spatial distribution of soil features, when the soil investigation was by means of a large sample size with grid sampling. It meant that the reliability and accuracy of the original large-scale soil thematic maps, such as maps of soil types, organic matter, pH value, soil nitrogen, phosphorus and potassium nutrient contents from second state soil survey, were better than maps generated by profile data, as these original large-scale soil thematic maps were derived from the large sample size with grid sampling. However, the data of 60 000 soil profiles from second state soil survey, which contained many soil features and could supply reliable soil thematic maps, were also of great importance for understanding spatial characteristics of these soil features. It has been showed that a large sample size was essential for a precise and accurate mapping of soil feature of the whole country. For mapping long-term changing or stable soil features such as soil types, texture and morphological features, it would be difficult to obtain reliable maps by a soil sample size much less than the second state soil survey. Considering the current requirements and the available data resources in China, the soil investigation in the future could be mainly focused in investigating data missing areas as well as some missing soil features for soil functions.

Key words: soil survey, geostatistics, soil organic matter, soil quality, reliability test, digital soil mapping