中国农业科学 ›› 2021, Vol. 54 ›› Issue (9): 1835-1845.doi: 10.3864/j.issn.0578-1752.2021.09.002
收稿日期:
2020-03-16
接受日期:
2020-05-21
出版日期:
2021-05-01
发布日期:
2021-05-10
通讯作者:
周子键,吴建宇
作者简介:
郝可伟,E-mail:基金资助:
HE KeWei1(),CHEN JiaFa2,ZHOU ZiJian2(
),WU JianYu1,2(
)
Received:
2020-03-16
Accepted:
2020-05-21
Online:
2021-05-01
Published:
2021-05-10
Contact:
ZiJian ZHOU,JianYu WU
摘要:
【目的】拟轮枝镰孢(Fusarium verticillioide)是一种主要的病原真菌,侵染玉米可以导致穗粒腐病、茎腐病、苗期根腐病及引起种子腐烂。由拟轮枝镰孢引起的病害不仅影响玉米的产量和品质,而且其病原菌代谢过程中产生的伏马菌素等多种真菌毒素严重威胁了人畜安全。通过宿主诱导的基因沉默(host-induced gene silencing,HIGS)技术创制抗拟轮枝镰孢的玉米种质,为玉米抗病育种提供新的优异抗源。【方法】通过同源克隆方法克隆可能与拟轮枝镰孢生长发育相关的关键基因,并通过体外转录获得相应的dsRNA片段;将不同基因的dsRNA与拟轮枝镰孢的分生孢子悬浮液预混后,用于后续的体外RNA沉默试验;对感病玉米自交系西502的种子进行消毒与接种,在培养皿中28℃避光培养48 h,调查种子的发病程度;在混有dsRNA的孢子悬浮液中加入葡萄糖,25℃培养24 h后,在显微镜下观察孢子萌发与菌丝生长情况;将三叶期的西502幼苗转移至预混dsRNA的孢子悬浮液中进行培养,7 d后观察苗期根腐病发病状况;通过种子鉴定与苗期鉴定体系,逐步筛选具有显著抑制效果的沉默靶标基因;合成筛选出的重点靶标基因片段,构建沉默载体并转化感病玉米自交系西502;对转基因株系的种子接种鉴定,验证转化玉米株系的抗性;提取接种后转基因种子的总RNA,对拟轮枝镰孢的靶标基因进行荧光定量分析,确定HIGS株系的沉默效果。【结果】从拟轮枝镰孢中克隆出18个与其生长发育相关的候选基因;通过种子接种鉴定,发现11个候选基因被沉默后,种子的发病等级极显著降低;进一步筛选出6个沉默后影响拟轮枝镰孢的孢子萌发和菌丝生长的候选靶标基因deo、Ras2、Dpdc、Hsp90、Frp1和Atg15;通过苗期接种鉴定,最后筛选出3个在体外具有显著抑制效果的沉默靶标基因deo、Atg15和Frp1;进而将3个靶标基因的特异区段人工融合成一段序列并构建沉默载体,获得转基因植株;鉴定发现转基因植株的T2代种子对拟轮枝镰孢的抗性显著增强,且3个靶标基因的表达量均显著下降。【结论】拟轮枝镰孢基因deo、Atg15、Frp1与其生长发育密切相关,且沉默后能够显著提升玉米对拟轮枝镰孢的抗性。
赫可伟,陈甲法,周子键,吴建宇. 基于宿主诱导的基因沉默技术创制抗拟轮枝镰孢玉米自交系[J]. 中国农业科学, 2021, 54(9): 1835-1845.
HE KeWei,CHEN JiaFa,ZHOU ZiJian,WU JianYu. Fusarium verticillioides Resistant Maize Inbred Line Development Using Host-Induced Gene Silencing Technology[J]. Scientia Agricultura Sinica, 2021, 54(9): 1835-1845.
表1
候选靶标基因列表"
基因 Gene | 编号 ID | 注释 Description | 参考文献 Reference |
---|---|---|---|
rasG | FVEG_09577 | Ras GTP酶Ras GTPase putative expressed | [ |
vea | FVEG_09521 | Velvet蛋白Velvet protein putative expressed | [ |
mapk | FVEG_05063 | 促分裂原活化蛋白Mitogen-activated protein kinase | [ |
pka1 | FVEG_05331 | cAMP依赖蛋白激酶2 cAMP-dependent protein kinase type 2 | [ |
CPP1 | FVEG_09543 | 丝苏氨酸蛋白磷酸酶PP1-1 Serinethreonine-protein phosphatase PP1-1 | [ |
gna2 | FVEG_02792 | 鸟嘌呤核苷酸结合蛋白alpha-2亚基Guanine nucleotide-binding protein alpha-2 subunit | [ |
aga1 | FVEG_11573 | 丙氨酸乙醛酸盐氨基转移酶1 Alanine-glyoxylate aminotransferase 1 | [ |
Atg15 | FVEG_09194 | 自噬相关脂肪酶Autophagy-like lipase putative expressed | [ |
cnb1 | FVEG_07853 | 磷酸酶B亚基Calcineurin subunit B | [ |
Frp1 | FVEG_01458 | F-box蛋白F-box protein putative expressed | [ |
adeny | FVEG_01363 | 腺苷酸环化酶Adenylate cyclase | [ |
hsp90 | FVEG_07470 | 热激蛋白90 Heat shock protein 90 | [ |
Dpdc | FVEG_07987 | DNA聚合酶delta催化亚基DNA polymerase delta catalytic subunit | [ |
gna3 | FVEG_04170 | 鸟嘌呤核苷酸结合蛋白alpha-3亚基Guanine nucleotide-binding protein alpha-3 subunit | [ |
cna1 | FVEG_04738 | 丝苏氨酸蛋白磷酸酶2B催化亚基Serinethreonine-protein phosphatase 2B catalytic subunit | [ |
ras2 | FVEG_02837 | Ras GTP酶Ras GTPase putative expressed | [ |
deo | FVEG_00771 | 脱氧辅蛋白合成酶Deoxyhypusine synthase | [ |
gna1 | FVEG_06962 | 鸟嘌呤核苷酸结合蛋白Guanine nucleotide-binding protein putative expressed | [ |
[1] | 王晓鸣, 晋齐鸣, 石洁, 王作英, 李晓. 玉米病害发生现状与推广品种抗性对未来病害发展的影响. 植物病理学报, 2006,36(1):1-11. |
WANG X M, JIN Q M, SHI J, WANG Z Y, LI X. The status of maize diseases and the possible effect of variety resistance on disease occurrence in the future. Acta Phytopathologica Sinica, 2006,36(1):1-11. (in Chinese) | |
[2] | KAMLE M, MAHATO D K, DEVI S, LEE K E, KANG S G, KUMAR P. Fumonisins: Impact on agriculture, food, and human health and their management strategies. Toxins, 2019,11(6):328. |
[3] | KNUTSEN H K, ALEXANDER J, BARREGÅRD L, BIGNAMI M, BRÜSCHWEILER B, CECCATELLI S, COTTRILL B, DINOVI M, EDLER L, GRASL-KRAUPP B, HOGSTRAND C, HOOGENBOOM L, NEBBIA C S, PETERSEN A, ROSE M, ROUDOT A C, SCHWERDTLE T, VLEMINCKX C, VOLLMER G, WALLACE C, DALL'ASTA G S, TARANU I, ALTIERI A, ROLDÁN- TORRES R, OSWALD I P. Risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. EFSA Journal, 2018,16(5):5242. |
[4] | ROSS P F, RICE L G, PLATTNER R D, OSWEILER G D, WILSON T M, OWENS D L, NELSON H A, RICHARD J L. Concentrations of fumonisin B1 in feeds associated with animal health problems. Mycopathologia, 1991,114(3):129-135. |
[5] | MARASAS W F O. Fumonisins: Their implications for human and animal health. Natural Toxins, 1995,3(4):193-198. |
[6] | GELDERBLOM W C A, JASKIEWICZ K, MARASAS W F O, THIEL P G, HORAK R M, VLEGGAAR R, KRIEK N P. Fumonisins: Novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Applied & Environmental Microbiology, 1988,54(7):1806-1811. |
[7] | YOSHIZAWA T, YAMASHITA A, LUO Y. Fumonisin occurrence in corn form high-risk and low-risk areas for human esophageal cancer in China. Applied and Environmental Microbiology, 1994,60(5):1626-1629. |
[8] | UENO Y, IIJIMA K, WANG S D, SUGIURA Y, SEKIJIMA M, TANAKA T, CHEN C, YU S Z. Fumonisins as a possible contributory risk factor for primary liver cancer: A 3-year study of corn harvested in Haimen, China, by HPLC and ELISA. Food and Chemical Toxicology, 1997,35(12):1143-1150. |
[9] | ZUO W, CHAO Q, ZHANG N, YE J, TAN G, LI B, XING Y, ZHANG B, LIU H, FENGLER K A, ZHAO J, ZHAO X, CHEN Y, LAI J, YAN J, XU M. A maize wall-associated kinase confers quantitative resistance to head smut. Nature Genetics, 2015,47(2):151-157. |
[10] | WANG C, YANG Q, WANG W, LI Y, GUO Y, ZHANG D, MA X, SONG W, ZHAO J, XU M. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. The New Phytologist, 2017,215(4):1503-1515. |
[11] | LUNSFORD J N, FUTRELL M C, SCOTT G E. Maternal influence on response of corn to Fusarium moniliforme. Phytopathology, 1974,65:223-225. |
[12] | PÉREZ-BRITO S, JEFFERS D, GONZÀLEZ-DE-LEÓN D, KHAIRALLAH M, CORTÉS-CRUZ M, VELÀZQUEZ-CARDELAS G, AZPIROZ-RIVERO S, SRINIVASAN G. QTL mapping of Fusarium moniliforme ear rot resistance in highland maize, México. Agrociencia, 2001,35:181-196. |
[13] | ROBERTSON-HOYT L A, JINES M P, BALINT-KURTI P J, KLEINSCHMIDT C E, WHITE D G, PAYNE G A, MARAGOS C M, MOLNÁR T L, HOLLAND J B. QTL mapping for Fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Science, 2006,46(4):1734-1745. |
[14] | MASCHIETTO V, COLOMBI C, PIRONA R, PEA G, STROZZI F, MAROCCO A, ROSSINI L, LANUBILE A. QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize. BMC Plant Biology, 2017,17(1):20. |
[15] | SEPTIANI P, LANUBILE A, STAGNATI L, BUSCONI M, NELISSEN H, MARIO ENRICO P, DELL’ACQUA M, MAROCCO A. Unravelling the genetic basis of Fusarium seedling rot resistance in the MAGIC maize population: Novel targets for breeding. Scientific Reports, 2019,9(1):5665. |
[16] | 张帆, 万雪琴, 潘光堂. 玉米抗穗粒腐病QTL定位. 作物学报, 2007,33(3):491-496. |
ZHANG F, WAN X Q, PAN G T. Molecular mapping of QTL for resistance to maize ear rot caused by Fusarium moniliforme. Acta Agronomica Sinica, 2007,33(3):491-496. (in Chinese) | |
[17] | DING J Q, WANG X M, CHANDER S, YAN J B, LI J S. QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Molecular Breeding, 2008,22(3):395-403. |
[18] | STAGNATI L, LANUBILE A, SAMAYOA L F, BRAGALANTI M, GIORNI P, BUSCONI M, HOLLAND J B, MAROCCO A. A genome wide association study reveals markers and genes associated with resistance to Fusarium verticillioides infection of seedlings in a maize diversity panel. Genes, Genomes, Genetics, 2019,9(2):571-579. |
[19] | ZILA C T, OGUT F, ROMAY M C, GARDNER C A, BUCKLER E S, HOLLAND J B. Genome-wide association study of Fusarium ear rot disease in the U.S.A. maize inbred line collection. BMC Plant Biology, 2014,14:372. |
[20] | LANUBILE A, FERRARINI A, MASCHIETTO V, DELLEDONNE M, MAROCCO A, BELLIN D. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genomics, 2014,15(1):710. |
[21] | YAO L, LI Y, MA C, TONG L, DU F, XU M. Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. Journal of Integrative Plant Biology, 2020,62(10):1535-1551. |
[22] | SUDARSHANA M R, ROY G, FALK B W. Methods for engineering resistance to plant viruses. Methods in Molecular Biology, 2007,354:183-195. |
[23] | WATERHOUSE P M, FUSARO A F. Viruses face a double defense by plant small RNAs. Science, 2006,313(5783):54-55. |
[24] | BAUM J A, BOGAERT T, CLINTON W, HECK G R, FELDMANN P, ILAGAN O, JOHNSON S, PLAETINCK G, MUNYIKWA T, PLEAU M, VAUGHN T, ROBERTS J. Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 2007,25(11):1322-1326. |
[25] | KHATRI M, RAJAM M V. Targeting polyamines of Aspergillus nidulansby siRNA specific to fungal ornithine decarboxylase gene. Medical Mycology, 2007,45(3):211-220. |
[26] | TINOCO M, BÁRBARA D, DALL'ASTTA R, JOÃO P, ARAGÃO F. In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biology, 2010,8:27. |
[27] | NOWARA D, GAY A, LACOMME C, SHAW J, RIDOUT C, DOUCHKOV D, HENSEL G, KUMLEHN J, SCHWEIZER P. HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. The Plant Cell, 2010,22(9):3130-3141. |
[28] | KOCH A, KUMAR N, WEBER L, KELLER H, IMANI J, KOGEL K H. Host-induced gene silencing of cytochrome P450 lanosterol C14 -demethylase-encoding genes confers strong resistance to Fusarium species. Proceedings of the National Academy of Sciences of the USA, 2013,110(48):19324-19329. |
[29] | THAKARE D, ZHANG J, WING R A, COTTY P J, SCHMIDT M A. Aflatoxin-free transgenic maize using host-induced gene silencing. Science Advances, 2017,3(3):e1602382. |
[30] | BLUHM B H, ZHAO X, FLAHERTY J E, XU J R, DUNKLE L D. RAS2 regulates growth and pathogenesis in Fusarium graminearum. Molecular Plant-Microbe Interactions, 2007,20(6):627-636. |
[31] | JIANG J, LIU X, YIN Y, MA Z. Involvement of a velvet protein FgVea in the regulation of asexual development, lipid and secondary metabolisms and virulence in Fusarium graminearum. PLoS ONE, 2011,6(11):e28291. |
[32] | ADÁM A L, KOHUT G, HORNOK L. Fphog1, a hog-type map kinase gene, is involved in multistress response in Fusarium proliferatum. Journal of Basic Microbiology, 2010,48(3):151-159. |
[33] | COLABARDINI A C, BROWN N A, SAVOLDI M, GOLDMAN M H S, GOLDMAN G H. Functional characterization of Aspergillus nidulans ypka, a homologue of the mammalian kinase SGK. PLoS ONE, 2013,8(3):e57630. |
[34] | CHOI Y E, SHIM W B. Functional characterization of Fusarium verticillioides CPP1, a gene encoding a putative protein phosphatase 2A catalytic subunit. Microbiology, 2008,154(1):326-336. |
[35] | EATON C J, CABRERA I E, SERVIN J A, WRIGHT S J, COX M P, BORKOVICH K A. The guanine nucleotide exchange factor RIC8 regulates conidial germination through Gα proteins in Neurospora crassa. PLoS ONE, 2012,7(10):e48026. |
[36] | VIJAI B, SABINE B, ALBERT V, GOPALAN S, WEI Y D. Alanine: glyoxylate aminotransferase 1 is required for mobilization and utilization of triglycerides during infection process of the rice blast pathogen, Magnaporthe oryzae. Plant Signaling & Behavior, 2012,7(9):1206-1208. |
[37] | NGUYEN L N, JÖRG B, LE G T, STÄRKEL C, SCHÄFER W. Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection. Fungal Genetics and Biology, 2011,48(3):217-224. |
[38] | ZHANG H, GUO J, VOEGELE R T, ZHANG J, DUAN Y, LUO H, KANG Z. Functional characterization of calcineurin homologs pscna1/pscnb1 in Puccinia striiformis f sp tritici using a host-induced RNAi system. PLoS ONE, 2012,7(11):e49262. |
[39] | DUYVESTEIJN R G E, WIJK R V, BOER Y, REP M, HARING M A. Frp1 is a Fusarium oxysporum f-box protein required for pathogenicity on tomato. Molecular Microbiology, 2005,57(4):1051-1063. |
[40] | LAMOTH F, JUVVADI P R, FORTWENDEL J R, STEINBACH W J. Heat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus. Eukaryotic Cell, 2012,11(11):1324-1332. |
[41] | ZHAO P B, REN A Z, XU H J, LI D C. The gene fpk1, encoding a camp-dependent protein kinase catalytic subunit homolog, is required for hyphal growth, spore germination, and plant infection in Fusarium verticillioides. Journal of Microbiology & Biotechnology, 2010,20(1):208. |
[42] | WORIEDH M, HAUBER I, MARTINEZ-ROCHA A L, VOIGT C, MAIER F J, SCHRÖDER M, MEIER C, HAUBER J, SCHÄFER W. Preventing fusarium head blight of wheat and cob rot of maize by inhibition of fungal deoxyhypusine synthase. Molecular Plant-Microbe Interactions, 2011,24(5):619-627. |
[43] | CHEN J, DING J, LI H, LI Z, SUN X, LI J, WANG R, DAI X, DONG H, SONG W, CHEN W, XIA Z, WU J. Detection and verification of quantitative trait loci for resistance to Fusarium ear rot in maize. Molecular Breeding, 2012,30(4):1649-1656. |
[44] | MU C, GAO J, ZHOU Z, WANG Z, SUN X, ZHANG X, DONG H, HAN Y, LI X, WU Y, SONG Y, MA P, DONG C, CHEN J, WU J. Genetic analysis of cob resistance to F. verticillioides: Another step towards the protection of maize from ear rot. Theoretical and Applied Genetics, 2019,132(4):1049-1059. |
[45] | DOLORES B R, FERNANDO C G, CARLOS L G A, VICTOR H A R, JOSE L C S. Responses of maize landrace seedlings to inoculations of Fusarium spp. Open Access Library Journal, 2017,4(6):1-14. |
[46] | JU M, ZHOU Z, MU C, ZHANG X, GAO J, LIANG Y, CHEN J, WU Y, LI X, WANG S, WEN J, YANG L, WU J. Dissecting the genetic architecture of Fusarium verticillioides seed rot resistance in maize by combining QTL mapping and genome-wide association analysis. Scientific Reports, 2017,7:46446. |
[1] | 柴海燕,贾娇,白雪,孟玲敏,张伟,金嵘,吴宏斌,苏前富. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性[J]. 中国农业科学, 2023, 56(1): 64-78. |
[2] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[3] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[4] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[5] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[6] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[7] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[8] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. |
[9] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[10] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[11] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[12] | 乔远,杨欢,雒金麟,汪思娴,梁蓝月,陈新平,张务帅. 西北地区玉米生产投入及生态环境风险评价[J]. 中国农业科学, 2022, 55(5): 962-976. |
[13] | 黄兆福, 李璐璐, 侯梁宇, 高尚, 明博, 谢瑞芝, 侯鹏, 王克如, 薛军, 李少昆. 不同种植区玉米生理成熟后田间站秆脱水的积温需求[J]. 中国农业科学, 2022, 55(4): 680-691. |
[14] | 石习, 宁丽华, 葛敏, 邬奇, 赵涵. 玉米氮状况相关生物标记物的筛选和应用[J]. 中国农业科学, 2022, 55(3): 438-450. |
[15] | 张建军, 党翼, 赵刚, 王磊, 樊廷录, 李尚中. 覆膜时期和施氮量对陇东旱塬玉米产量和水氮利用效率的影响[J]. 中国农业科学, 2022, 55(3): 479-490. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 468
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 470
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|