中国农业科学 ›› 2021, Vol. 54 ›› Issue (10): 2192-2202.doi: 10.3864/j.issn.0578-1752.2021.10.014
收稿日期:
2020-08-30
接受日期:
2020-11-24
出版日期:
2021-05-16
发布日期:
2021-05-24
通讯作者:
张春晖
作者简介:
黄峰,E-mail: 基金资助:
HUANG Feng(),WEI QiChao,LI Xia,LIU ChunMei,ZHANG ChunHui(
)
Received:
2020-08-30
Accepted:
2020-11-24
Online:
2021-05-16
Published:
2021-05-24
Contact:
ChunHui ZHANG
摘要:
嫩度是决定肉食用品质的重要指标。宰后肉的嫩度发生不连续变化,严重降低了消费者的购买意愿,因此阐明宰后嫩化机理一直是肉品科学领域的研究热点。自“凋亡”的概念引入至宰后肌肉嫩化过程后一直广受关注,动物被屠宰放血后,活性氧(reactive oxygen species,ROS)大量累积,ATP(adenosine triphosphate)逐渐耗尽,必然导致细胞死亡。宰后肌细胞死亡和肌肉嫩化都是在一系列调控因子作用下激活肌肉内源酶,并由内源酶水解蛋白质破坏细胞结构,因此这两个生化过程被认为高度相关。本文综述了宰后肌细胞主要以凋亡的形式死亡,分析了除凋亡外,宰后早期产生少量ROS时细胞会通过自噬启动自身防御系统,宰后后期ATP逐渐耗尽肌细胞可能从凋亡转变为坏死;明确了线粒体通路是宰后肌肉中细胞凋亡酶激活的关键路径,线粒体死亡因子释放是细胞内死亡级联反应的总开关,其开放状态直接决定着细胞以何种途径进行死亡,并进一步从线粒体膜通透化和内膜嵴重构两方面,讨论了宰后线粒体损伤诱导凋亡因子的释放机理;综述了线粒体损伤变化及其对嫩化过程的影响,并从线粒体通过参与能量代谢影响肌肉pH以及通过释放凋亡因子调控细胞凋亡酶活性两方面分析了其潜在机理;探讨了宰后肌肉线粒体与内质网间相互作用以影响Ca2+信号传导以及细胞凋亡过程,或与溶酶体相互作用,破坏溶酶体膜稳定性,使其释放组织蛋白酶以激活线粒体Bax和Bid而加速线粒体膜通透性;综述了细胞凋亡酶在宰后早期被激活,并参与部分肌原纤维蛋白的有限降解,但随着宰后时间的延长,ATP逐渐耗尽等因素导致细胞凋亡酶失活,因此细胞凋亡酶只参与宰后早期的嫩化过程。综述内容可为完善宰后肌肉嫩化过程提供理论参考。
黄峰,魏起超,李侠,刘春梅,张春晖. 细胞凋亡对宰后肌肉嫩化作用机理的研究进展[J]. 中国农业科学, 2021, 54(10): 2192-2202.
HUANG Feng,WEI QiChao,LI Xia,LIU ChunMei,ZHANG ChunHui. Research Progress on Mechanisms of Apoptosis to Postmortem Tenderization in Muscle[J]. Scientia Agricultura Sinica, 2021, 54(10): 2192-2202.
[1] |
HOLMAN B W B, VAN DE VEN R J, MAO Y W, COOMBS C E O, HOPKINS D L. Using instrumental (CIE and reflectance) measures to predict consumers' acceptance of beef colour. Meat Science, 2017,127:57-62.
doi: 10.1016/j.meatsci.2017.01.005 |
[2] |
SHACKELFORD S D, WHEELER T L, MEADE M K, REAGAN J O, BYRNES B L, KOOHMARAIE M. Consumer impressions of Tender Select beef. Journal of Animal Science, 2001,79(10):2605-2614.
doi: 10.2527/2001.79102605x |
[3] |
KOOHMARAIE M, KENT M P, SHACKELFORD S D, VEISETH E, WHEELER T L. Meat tenderness and muscle growth: Is there any relationship? Meat Science, 2002,62(3):345-352.
doi: 10.1016/S0309-1740(02)00127-4 |
[4] |
KOOHMARAIE M, GEESINK G H. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Science, 2006,74(1):34-43.
doi: 10.1016/j.meatsci.2006.04.025 |
[5] |
GEESINK G H, KUCHAY S, CHISHTI A H, KOOHMARAIE M. µ-calpain is essential for postmortem proteolysis of muscle proteins. Journal of Animal Science, 2006,84(10):2834-2840.
doi: 10.2527/jas.2006-122 |
[6] |
OUALI A, HERRERA-MENDEZ C H, COULIS G, BECILA S, BOUDJELLAL A, AUBRY L, SENTANDREU M A. Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Science, 2006,74(1):44-58.
doi: 10.1016/j.meatsci.2006.05.010 |
[7] | SENTANDREU M A, COULIS G, OUALI A. Role of muscle endopeptidases and their inhibitors in meat tenderness. Trends in Food Science & Technology, 2002,13(12):400-421. |
[8] |
NIKOLETOPOULOU V, MARKAKI M, PALIKARAS K, TAVERNARAKIS N. Crosstalk between apoptosis, necrosis and autophagy. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2013,1833(12):3448-3459.
doi: 10.1016/j.bbamcr.2013.06.001 |
[9] | 黄明, 黄峰, 黄继超, 徐宝才, 周光宏, 徐幸莲. 内源性蛋白酶对宰后肌肉嫩化机制研究进展. 中国农业科学, 2011,44(15):3214-3222. |
HUANG M, HUANG F, HUANG J C, XU B C, ZHOU G H, XU X L. Advances in research on postmortem tenderization mechanism of endogenous proteolytic enzymes in muscle. Scientia Agricultura Sinica, 2011,44(15):3214-3222. (in Chinese) | |
[10] | OUALI A, HERRERA-MENDEZ C H, COULIS G, SAMIRA B, BOUDJELLAL A, HARHOURA K, AUBRY L, SENTANDREU M A. Meat tenderisation and muscle cell death, two highly related events. Tehnologija Mesa, 2007,48(1/2):1-15. |
[11] | HERRERA-MENDEZ C H, BECILA S, BOUDJELLAL A, OUALI A. Meat ageing: Reconsideration of the current concept. Trends in Food Science & Technology, 2006,17(8):394-405. |
[12] |
CAO J X, SUN W Q, ZHOU G H, XU X L, PENG Z Q, HU Z L. Morphological and biochemical assessment of apoptosis in different skeletal muscles of bulls during conditioning. Journal of Animal Science, 2010,88(10):3439-3444.
doi: 10.2527/jas.2009-2412 |
[13] |
BECILA S, HERRERA-MENDEZ C H, COULIS G, LABAS R, ASTRUC T, PICARD B, BOUDJELLAL A, PELISSIER P, BREMAUD L, OUALI A. Postmortem muscle cells die through apoptosis. European Food Research and Technology, 2010,231(3):485-493.
doi: 10.1007/s00217-010-1296-5 |
[14] |
HERRERA-MENDEZ C H, BECILA S, COULIS G, SENTANDREU M A, AUBRY L, OUALI A. Purification and partial characterization of antithrombin III from bovine skeletal muscle and possible role of thrombin in postmortem apoptosis development and in efficiency of low voltage electrical stimulation. Food Research International, 2010,43(1):356-363.
doi: 10.1016/j.foodres.2009.10.012 |
[15] |
KEMP C M, PARR T, BARDSLEY R G, BUTTERY P J. Comparison of the relative expression of caspase isoforms in different porcine skeletal muscles. Meat Science, 2006,73(3):426-431.
doi: 10.1016/j.meatsci.2005.12.009 |
[16] |
CHEN L, FENG X C, LU F, XU X L, ZHOU G H, Li Q Y, GUO X Y. Effects of camptothecin, etoposide and Ca2+ on caspase-3 activity and myofibrillar disruption of chicken during postmortem ageing. Meat Science, 2011,87(3):165-174.
doi: 10.1016/j.meatsci.2010.10.002 |
[17] |
UNDERWOOD K R, MEANS W J, DU M. Caspase 3 is not likely involved in the postmortem tenderization of beef muscle. Journal of Animal Science, 2008,86(4):960-966.
doi: 10.2527/jas.2007-0549 |
[18] | ADHIHETTY P J, HOOD D A. Mechanisms of apoptosis in skeletal muscle. Basic & Applied Myology, 2003,13(4):171-179. |
[19] | 王莲, 刘永红, 魏玲. 细胞死亡方式的新理念. 医学与哲学(临床决策论坛版), 2011,32(14):61-63. |
WANG L, LIU Y H, WEI L. New theories and concepts of the mode of cell death. Medicine and Philosophy (Clinical Decision Making Forum Edition), 2011,32(14):61-63. (in Chinese) | |
[20] | LANA A, ZOLLA L. Apoptosis or autophagy, that is the question: Two ways for muscle sacrifice towards meat. Trends in Food Science & Technology, 2015,46(2):231-241. |
[21] | 贾旭. 羊肉成熟过程中细胞自噬对细胞凋亡的影响机制[D]. 杨凌: 西北农林科技大学, 2017. |
JIA X. The research of the effect of autophagy on the apoptosis of mutton[D]. Yangling: Northwest A&F University, 2017. (in Chinese) | |
[22] |
DEGTEREV A, HUANG Z H, BOYCE M, LI Y Q, JAGTAP P, MIZUSHIMA N, CUNY G D, MITCHISON T J, MOSKOWITZ M A, YUAN J Y. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chemical Biology, 2005,1(2):112-119.
doi: 10.1038/nchembio711 |
[23] |
HENCKEL P, KARLSSON A, JENSEN M T, OKSBJERG N, PETERSEN J S. Metabolic conditions in porcine longissimus muscle immediately pre-slaughter and its influence on peri- and post mortem energy metabolism. Meat Science, 2002,62(2):145-155.
doi: 10.1016/S0309-1740(01)00239-X |
[24] |
BHOLA P D, LETAI A. Mitochondria-Judges and executioners of cell death sentences. Molecular Cell, 2016,61(5):695-704.
doi: 10.1016/j.molcel.2016.02.019 |
[25] |
BOCK F J, TAIT S W G. Mitochondria as multifaceted regulators of cell death. Nature Reviews Molecular Cell Biology, 2020,21(2):85-100.
doi: 10.1038/s41580-019-0173-8 |
[26] |
HUANG F, HUANG M, ZHANG H, GUO B, ZHANG D Q, ZHOU G H. Cleavage of the calpain inhibitor, calpastatin, during postmortem ageing of beef skeletal muscle. Food Chemistry, 2014,148:1-6.
doi: 10.1016/j.foodchem.2013.10.016 |
[27] |
SHI Y X, MELNIKOV V Y, SCHRIER R W, EDELSTEIN C L. Downregulation of the calpain inhibitor protein calpastatin by caspases during renal ischemia-reperfusion. American Journal of Physiology-Renal Physiology, 2000,279(3):F509-F517.
doi: 10.1152/ajprenal.2000.279.3.F509 |
[28] | PÖRN-ARES M I, SAMALI A, ORRENIUS S. Cleavage of the calpain inhibitor, calpastatin, during apoptosis. Cell Death & Differentiation, 1998,5(12):1028-1033. |
[29] |
CHUA B T, GUO K, LI P. Direct cleavage by the calcium-activated protease calpain can lead to inactivation of caspases. Journal of Biological Chemistry, 2000,275(7):5131-5135.
doi: 10.1074/jbc.275.7.5131 |
[30] |
GUPTA S, GOLLAPUDI S. Susceptibility of naïve and subsets of memory T cells to apoptosis via multiple signaling pathways. Autoimmunity Reviews, 2007,6(7):476-481.
doi: 10.1016/j.autrev.2007.02.005 |
[31] | NAKANISHI K, SUDO T, MORISHIMA N. Endoplasmic reticulum stress signaling transmitted by ATF6 mediates apoptosis during muscle development. Journal of Cell Biology, 2005,169(4):555-560. |
[32] |
BRUNELLE J K, CHANDEL N S. Oxygen deprivation induced cell death: An update. Apoptosis, 2002,7(6):475-482.
doi: 10.1023/A:1020668923852 |
[33] |
CAO J X, OU C R, ZOU Y F, YE K P, ZHANG Q Q, KHAN M A, PAN D D, ZHOU G. Activation of caspase-3 and its correlation with shear force in bovine skeletal muscles during postmortem conditioning. Journal of Animal Science, 2013,91(9):4547-4552.
doi: 10.2527/jas.2013-6469 |
[34] |
HUANG F, HUANG M, ZHANG H, ZHANG C J, ZHANG D Q, ZHOU G H. Changes in apoptotic factors and caspase activation pathways during the postmortem aging of beef muscle. Food Chemistry, 2016,190:110-114.
doi: 10.1016/j.foodchem.2015.05.056 |
[35] |
WANG L L, HAN L, MA X L, YU Q L, ZHAO S N. Effect of mitochondrial apoptotic activation through the mitochondrial membrane permeability transition pore on yak meat tenderness during postmortem aging. Food Chemistry, 2017,234:323-331.
doi: 10.1016/j.foodchem.2017.04.185 |
[36] |
RØNNING S B, ANDERSEN P V, PEDERSEN M E, HOLLUNG K. Primary bovine skeletal muscle cells enters apoptosis rapidly via the intrinsic pathway when available oxygen is removed. Plos ONE, 2017,12(8):e0182928.
doi: 10.1371/journal.pone.0182928 |
[37] | 蒋显. 线粒体释放细胞凋亡因子的机理研究[D]. 北京: 北京协和医学院, 2014. |
JIANG X. Mechanism of release of mitochondrial apoptotic proteins[D]. Beijing: Peking Union Medical College, 2014. (in Chinese) | |
[38] |
QUINTANA-CABRERA R, MEHROTRA A, RIGONI G, SORIANO M E. Who and how in the regulation of mitochondrial cristae shape and function. Biochemical and Biophysical Research Communications, 2018,500(1):94-101.
doi: 10.1016/j.bbrc.2017.04.088 |
[39] |
GOGVADZE V, ORRENIUS S, ZHIVOTOVSKY B. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2006,1757(5):639-647.
doi: 10.1016/j.bbabio.2006.03.016 |
[40] | 黄国敏, 王玉佩, 孙超, 张雪甜, 张红. 线粒体超微结构及其调控机制的研究进展. 生物化学与生物物理进展, 2019,46(12):1141-1149. |
HUANG G M, WANG Y P, SUN C, ZHANG X T, ZHANG H. Advances in the study of mitochondrial ultrastructure and its regulatory mechanism. Progress in Biochemistry and Biophysics, 2019,46(12):1141-1149. (in Chinese) | |
[41] | 陈丽, 董君, 闫朝君, 宋质银. 线粒体嵴重构及其调控. 生理科学进展, 2018,49(1):3-13. |
CHEN L, DONG J, YAN C J, SONG Z Y. The role and regulation of mitochondrial cristae remodeling. Progress in Physiological Sciences, 2018,49(1):3-13. (in Chinese) | |
[42] | 郑凯, 杨梅桂, 闫朝君, 汤明亮, 宋质银. 线粒体动力学与细胞凋亡. 中国细胞生物学学报, 2019,41(8):1467-1476. |
ZHENG K, YANG M G, YAN C J, TANG M L, SONG Z Y. Mitochondrial dynamics and apoptosis. Chinese Journal of Cell Biology, 2019,41(8):1467-1476. (in Chinese) | |
[43] |
MALHEIROS J M, BRAGA C P, GROVE R A, RIBEIRO F A, CALKINS C R, ADAMEC J, CHARDULO L A L. Influence of oxidative damage to proteins on meat tenderness using a proteomics approach. Meat Science, 2019,148:64-71.
doi: 10.1016/j.meatsci.2018.08.016 |
[44] |
CHRIKI S, GARDNER G E, JURIE C, PICARD B, MICOL D, BRUN J P, JOURNAUX L, HOCQUETTE J F. Cluster analysis application identifies muscle characteristics of importance for beef tenderness. BMC Biochemistry, 2012,13:29.
doi: 10.1186/1471-2091-13-29 |
[45] |
MATARNEH S K, ENGLAND E M, SCHEFFLER T L, YEN C N, WICKS J C, SHI H, GERRARD D E. A mitochondrial protein increases glycolytic flux. Meat Science, 2017,133:119-125.
doi: 10.1016/j.meatsci.2017.06.007 |
[46] |
MATARNEH S K, BELINE M, DE LUZ E SILVA S, SHI H, GERRARD D E. Mitochondrial F1-ATPase extends glycolysis and pH decline in an in vitro model. Meat Science, 2018,137:85-91.
doi: 10.1016/j.meatsci.2017.11.009 |
[47] |
SCHEFFLER T L, MATARNEH S K, ENGLAND E M, GERRARD D E. Mitochondria influence postmortem metabolism and pH in an in vitro model. Meat Science, 2015,110:118-125.
doi: 10.1016/j.meatsci.2015.07.007 |
[48] |
LIU Z Y, DU X N, DENG J, GU M Y, HU H L, GUI M, YIN C C, CHANG Z Z. The interactions between mitochondria and sarcoplasmic reticulum and the proteome characterization of mitochondrion- associated membrane from rabbit skeletal muscle. Proteomics, 2015,15(15):2701-2704.
doi: 10.1002/pmic.v15.15 |
[49] | HUANG F, DING Z J, ZHANG C J, HU H H, ZHANG L, ZHANG H. Effects of calcium and zinc ions injection on caspase-3 activation and tenderness in post-mortem beef skeletal muscles. International Journal of Food Science & Technology, 2018,53(3):582-589. |
[50] | 薛亮, 尹长城. 线粒体-内质网结构偶联的研究进展. 中国细胞生物学学报, 2013,35(12):1791-1796. |
XUE L, YIN C C. Progress in the study of mitochondria-endoplasmic reticulum physical coupling. Chinese Journal of Cell Biology, 2013,35(12):1791-1796. (in Chinese) | |
[51] |
CHERUBINI M, LOPEZ-MOLINA L, GINES S. Mitochondrial fission in Huntington's disease mouse striatum disrupts ER-mitochondria contacts leading to disturbances in Ca2+ efflux and Reactive Oxygen Species (ROS) homeostasis. Neurobiology of Disease, 2020,136:104741.
doi: 10.1016/j.nbd.2020.104741 |
[52] |
O'HALLORAN G R, TROY D J, BUCKLEY D J, REVILLE W J. The role of endogenous proteases in the tenderisation of fast glycolysing muscle. Meat Science, 1997,47(3/4):187-210.
doi: 10.1016/S0309-1740(97)00046-6 |
[53] |
ZHANG J Y, LI M Q, YU Q L, HAN L, MA Z L. Effects of lysosomal-mitochondrial apoptotic pathway on tenderness in post-mortem bovine longissimus muscle. Journal of Agricultural and Food Chemistry, 2019,67(16):4578-4587.
doi: 10.1021/acs.jafc.9b00894 |
[54] |
KEMP C M, BARDSLEY R G, PARR T. Changes in caspase activity during the postmortem conditioning period and its relationship to shear force in porcine longissimus muscle. Journal of Animal Science, 2006,84(10):2841-2846.
doi: 10.2527/jas.2006-163 |
[55] |
ZHANG M H, WANG D Y, HUANG W, LIU F, ZHU Y Z, XU W M, CAO J X. Apoptosis during postmortem conditioning and its relationship to duck meat quality. Food Chemistry, 2013,138(1):96-100.
doi: 10.1016/j.foodchem.2012.10.142 |
[56] |
BERNARD C, CASSAR-MALEK I, LE CUNFF M, DUBROEUCQ H, RENAND G, HOCQUETTE J F. New indicators of beef sensory quality revealed by expression of specific genes. Journal of Agricultural and Food Chemistry, 2007,55(13):5229-5237.
doi: 10.1021/jf063372l |
[57] |
LAVILLE E, SAYD T, MORZEL M, BLIENT S, CHAMBON C, LEPETIT J, RENAND G, HOCQUETTE J F. Proteome changes during meat aging in tough and tender beef suggest the importance of apoptosis and protein solubility for beef aging and tenderization. Journal of Agricultural and Food Chemistry, 2009,57(22):10755-10764.
doi: 10.1021/jf901949r |
[58] |
CHEN L, FENG X C, ZHANG Y Y, LIU X B, ZHANG W G, LI C B, ULLAH N, Xu X L, ZHOU G H. Effects of ultrasonic processing on caspase-3, calpain expression and myofibrillar structure of chicken during post-mortem ageing. Food Chemistry, 2015,177:280-287.
doi: 10.1016/j.foodchem.2014.11.064 |
[59] |
HUANG M, HUANG F, XU X L, ZHOU G H. Influence of caspase3 selective inhibitor on proteolysis of chicken skeletal muscle proteins during post mortem aging. Food Chemistry, 2009,115(1):181-186.
doi: 10.1016/j.foodchem.2008.11.095 |
[60] |
HUANG M, HUANG F, MA H J, XU X L, ZHOU G H. Preliminary study on the effect of caspase-6 and calpain inhibitors on postmortem proteolysis of myofibrillar proteins in chicken breast muscle. Meat Science, 2012,90(3):536-542.
doi: 10.1016/j.meatsci.2011.09.004 |
[61] |
KEMP C M, PARR T. The effect of recombinant caspase 3 on myofibrillar proteins in porcine skeletal muscle. Animal, 2008,2(8):1254-1264.
doi: 10.1017/S1751731108002310 |
[62] |
HUANG M, HUANG F, XUE M, XU X L, ZHOU G H. The effect of active caspase-3 on degradation of chicken myofibrillar proteins and structure of myofibrils. Food Chemistry, 2011,128(1):22-27.
doi: 10.1016/j.foodchem.2011.02.062 |
[63] |
MOHRHAUSER D A, UNDERWOOD K R, WEAVER A D. In vitro degradation of bovine myofibrils is caused by μ-calpain, not caspase-3. Journal of Animal Science, 2011,89(3):798-808.
doi: 10.2527/jas.2010-3149 |
[64] |
HUANG F, HUANG M, ZHOU G H, XU X L, XUE M. In vitro proteolysis of myofibrillar proteins from beef skeletal muscle by caspase-3 and caspase-6. Journal of Agricultural and Food Chemistry, 2011,59(17):9658-9663.
doi: 10.1021/jf202129r |
[1] | 刘玉芳,陈玉林,周祖阳,储明星. miR-221-3p靶向BCL2L11调控小尾寒羊卵泡颗粒细胞凋亡[J]. 中国农业科学, 2022, 55(9): 1868-1876. |
[2] | 邢明杰,顾宪红,王枭鸿,郝月. IL-15过表达对猪骨骼肌细胞成肌分化的影响[J]. 中国农业科学, 2022, 55(18): 3652-3663. |
[3] | 李闰婷,陈龙欣,张丽萌,何海迎,王泳,杨若晨,段春辉,刘月琴,王玉琴,张英杰. 粒细胞集落刺激因子在羊成纤维细胞中的表达及对细胞增殖和凋亡的影响[J]. 中国农业科学, 2021, 54(11): 2434-2444. |
[4] | 潘阳阳,王萌,芮弦,王立斌,何翃闳,王靖雷,马睿,徐庚全,崔燕,樊江峰,余四九. IGF-1调控RBM3表达抑制低温应激诱导牦牛卵丘细胞凋亡[J]. 中国农业科学, 2020, 53(11): 2285-2296. |
[5] | 陈琳琳,侯莹,丁胜利,施艳,李洪连. 假禾谷镰孢细胞凋亡基因FpTatD的鉴定与表达分析[J]. 中国农业科学, 2016, 49(12): 2301-2309. |
[6] | 丛向明1, 牛丽1, 白喜云1, 武彩红2, 孙耀贵1, 贺俊平1, 白元生3, 李宏全1. 甘草酸二钾体外诱导感染MDV鸡胚成纤维细胞 凋亡发挥抗病毒作用[J]. 中国农业科学, 2013, 46(18): 3914-3921. |
[7] | 崔新洁, 胡庆亮, 李奕平, 陶琳, 修磊, 刘秉春, 陈媛, 王潇. 金黄色葡萄球菌诱导牛原代乳腺上皮细胞的凋亡[J]. 中国农业科学, 2013, 46(15): 3212-3219. |
[8] | 唐丽, 位兰, 张勇, 彭克美. 鸵鸟雏鸟下丘脑室旁核发育的组织学及GABA的表达[J]. 中国农业科学, 2012, 45(14): 2999-3006. |
[9] | 马春红1;李秀丽1;2;董文琦3;张红心4;李运朝1;崔四平1;王立安2;贾银锁1;戴志刚5. HMC毒素诱导玉米同核C、N细胞质细胞凋亡的荧光显微观察[J]. 中国农业科学, 2011, 44(9): 1823-1829. |
[10] | 汪纪仓, 刘学忠, 袁燕, 裔传卉, 卞建春, 刘宗平. 氧化应激在镉致大鼠肝细胞凋亡中的作用[J]. 中国农业科学, 2011, 44(18): 3895-3902. |
[11] | 黄明, 黄峰, 黄继超, 徐宝才, 周光宏, 徐幸莲. 内源性蛋白酶对宰后肌肉嫩化机制研究进展[J]. 中国农业科学, 2011, 44(15): 3214-3222. |
[12] | 龚文芳,喻树迅,宋美珍,范术丽,庞朝友,肖水平 . 棉花抗细胞凋亡基因GhDAD1的克隆、定位及表达分析[J]. 中国农业科学, 2010, 43(18): 3713-3723 . |
[13] | 潘敏慧,陈 默,黄淑静,于子舒,成传刚,鲁 成 . 家蚕细胞色素C基因的克隆及其蛋白在家蚕凋亡细胞中的释放[J]. 中国农业科学, 2009, 42(7): 2546-2551 . |
[14] | 王 荣,梁元存,王丹丹,刘爱新,孟庆伟. Parasiticein诱导烟草细胞凋亡的形态及生化特征[J]. 中国农业科学, 2008, 41(6): 1661-1666 . |
[15] | 李 奎,康相涛,刘 英,孙桂荣. 固始鸡免疫器官内细胞凋亡基因Fas和FasL的动态表达[J]. 中国农业科学, 2008, 41(5): 1489-1496 . |
|