中国农业科学 ›› 2019, Vol. 52 ›› Issue (4): 725-737.doi: 10.3864/j.issn.0578-1752.2019.04.013
曾祥媛1,赵武奇1(),卢丹1,吴妮1,孟永宏1,高贵田1,雷玉山2
收稿日期:
2018-08-13
接受日期:
2018-09-27
出版日期:
2019-02-16
发布日期:
2019-02-27
通讯作者:
赵武奇
作者简介:
曾祥媛,E-mail: 基金资助:
ZENG XiangYuan1,ZHAO WuQi1(),LU Dan1,WU Ni1,MENG YongHong1,GAO GuiTian1,LEI YuShan2
Received:
2018-08-13
Accepted:
2018-09-27
Online:
2019-02-16
Published:
2019-02-27
Contact:
WuQi ZHAO
摘要:
【目的】研究不同的超声波工艺参数对猕猴桃片渗糖效果及干燥能耗与特征品质的影响,建立数学回归模型并优化工艺参数,为超声渗糖技术用于生产高品质、低能耗的猕猴桃片提供理论依据。【方法】试验以猕猴桃为原料,选取时间、温度、蔗糖浓度、超声声能密度为因素,以猕猴桃的固形物增加率(solids gain,SG)、水分损失率(water loss,WL)、单位能耗、可滴定酸、含糖量、色差(ΔE)、L*、a*、b*、硬度、黏性、弹性、黏聚性、胶黏性、咀嚼性、回复性、叶绿素保存率、维生素C保存率、可溶性固形物为指标,进行四因素Box-Benhnken响应面试验,利用因子分析筛选出评价猕猴桃片品质的特征指标,建立单位能耗及猕猴桃片特征指标的二次多项式回归方程模型,分析影响各指标的主次因素及因素间的交互作用,优化得出猕猴桃片超声渗糖工艺的最佳参数,并加以验证。【结果】猕猴桃片的品质特征指标分别为回复性、ΔE、含糖量、WL、可滴定酸、维生素C保存率;建立的猕猴桃片单位能耗和品质特征指标的回归模型具有统计学意义(P<0.05)。各因子对含糖量影响的大小依次是蔗糖浓度>时间>温度>声能密度,时间和温度、温度和蔗糖浓度、蔗糖浓度和声能密度的交互作用均为极显著,温度和声能密度的交互作用显著。各因子对WL影响的大小依次是时间>声能密度>蔗糖浓度>温度,时间和温度及时间和声能密度的交互作用显著。各因子对单位能耗影响的大小依次是蔗糖浓度>时间>声能密度>温度,温度和蔗糖浓度的交互作用显著。各因子对回复性影响的大小依次是时间>蔗糖浓度>温度>声能密度,蔗糖浓度和声能密度交互作用显著。各因子对ΔE影响的大小依次是蔗糖浓度>温度=声能密度>时间;各因子对可滴定酸影响的大小依次是时间>声能密度>蔗糖浓度>温度,时间和声能密度交互作用显著;各因子对维生素C保存率影响的大小依次是蔗糖浓度>温度>时间>声能密度。猕猴桃片超声渗糖工艺参数为:时间58 min、超声温度47℃、蔗糖浓度40 °Brix、超声声能密度0.7 W·mL -1,在此条件下猕猴桃片的单位能耗为18.15 kJ·g -1、回复性为0.172、ΔE为15.51、含糖量为35.03%、WL为27.85%、可滴定酸为1.58%、维生素C保存率为92.23%。 【结论】因子分析法能提取出评价猕猴桃片品质的特征指标。建立的二次多项式回归模型可分别用于分析和预测超声波处理参数对猕猴桃片的渗糖效果及干燥能耗与品质的影响。超声浸糖处理具有渗糖速率快、破坏小等优点,处理后的猕猴桃片单位能耗较低、质地品质较好,超声波处理可用于猕猴桃片的渗糖工艺。
曾祥媛,赵武奇,卢丹,吴妮,孟永宏,高贵田,雷玉山. 超声波对猕猴桃片的渗糖效果及干燥能耗与品质的影响[J]. 中国农业科学, 2019, 52(4): 725-737.
ZENG XiangYuan,ZHAO WuQi,LU Dan,WU Ni,MENG YongHong,GAO GuiTian,LEI YuShan. Effects of Ultrasound on the Sugar Permeability Effect, Drying Energy Consumption and Quality of Kiwifruit Slices[J]. Scientia Agricultura Sinica, 2019, 52(4): 725-737.
表2
响应面试验设计与结果"
编号 Code | 时间 Time (min) | 温度 Tempe- rature (℃) | 蔗糖浓度 Sucrose concen- tration (°Brix) | 超声声 能密度 Ultrasonic density (W·mL-1) | 硬度 Hard- ness (g) | 黏性 Adhesive- ness | 弹性 Spring- iness | 粘聚性 Cohesi- veness | 胶粘性Gummi- ness (g) | 咀嚼性 Chewi- ness (g) | 回复性Resilie- nce | L* | a* | b* | ΔE | 可滴定酸 Titratable acid (%) | 叶绿素 保存率 Chlorophyll preservation rate (%) | 含糖量 Sugar content (%) | SG (%) | WL (%) | TSS (%) | 维生素C 保存率 Vitamin C preservation rate (%) | 单位能耗 Unit energy consumption (kJ·g-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 60 | 50 | 60 | 0.75 | 3390.83 | -1.64 | 0.84 | 0.55 | 1881.13 | 1573.14 | 0.18 | 74.07 | 2.24 | 29.83 | 24.31 | 1.58 | 89.18 | 31.02 | 18.90 | 20.79 | 39 | 81.20 | 18.5 |
2 | 50 | 40 | 50 | 0.88 | 1204.52 | -4.75 | 0.84 | 0.55 | 660.23 | 555.24 | 0.18 | 79.00 | -0.43 | 28.40 | 28.45 | 1.40 | 79.76 | 35.70 | 17.85 | 18.51 | 36 | 83.65 | 17 |
3 | 50 | 50 | 50 | 0.75 | 1953.03 | -0.94 | 0.84 | 0.54 | 1063.70 | 893.56 | 0.18 | 74.57 | 0.50 | 32.16 | 24.25 | 1.88 | 83.74 | 37.26 | 11.07 | 26.01 | 38 | 85.74 | 19 |
4 | 60 | 40 | 50 | 0.75 | 1841.43 | -5.02 | 0.84 | 0.55 | 1006.10 | 840.62 | 0.18 | 66.53 | 0.27 | 24.23 | 19.91 | 1.40 | 95.19 | 38.83 | 5.74 | 19.55 | 37 | 88.56 | 18.5 |
5 | 50 | 50 | 60 | 0.63 | 1539.59 | -3.15 | 0.84 | 0.55 | 850.97 | 712.38 | 0.18 | 73.01 | 1.27 | 30.29 | 22.98 | 1.84 | 89.17 | 37.89 | 16.82 | 19.13 | 34 | 90.11 | 13.5 |
6 | 40 | 50 | 50 | 0.88 | 1726.83 | -4.19 | 0.84 | 0.56 | 961.76 | 804.74 | 0.18 | 75.17 | -0.51 | 32.28 | 24.59 | 1.23 | 79.35 | 36.47 | 8.63 | 22.80 | 42 | 88.11 | 14 |
7 | 50 | 60 | 50 | 0.88 | 1518.26 | -8.65 | 0.85 | 0.56 | 842.82 | 720.18 | 0.18 | 65.51 | 1.06 | 32.86 | 18.01 | 1.23 | 81.14 | 37.51 | 17.80 | 30.78 | 45 | 85.75 | 18 |
8 | 40 | 50 | 60 | 0.75 | 1585.42 | -5.01 | 0.79 | 0.47 | 738.27 | 580.53 | 0.12 | 61.78 | -0.06 | 23.41 | 16.35 | 1.23 | 80.97 | 36.92 | 7.63 | 19.87 | 38 | 83.02 | 13 |
9 | 40 | 50 | 40 | 0.75 | 1636.43 | -0.37 | 0.84 | 0.55 | 893.02 | 748.93 | 0.18 | 58.26 | 4.81 | 27.61 | 15.34 | 1.40 | 91.19 | 37.90 | 12.03 | 27.07 | 41 | 89.32 | 19.5 |
10 | 60 | 50 | 40 | 0.75 | 1937.21 | -1.79 | 0.81 | 0.55 | 1071.53 | 872.66 | 0.18 | 51.75 | 3.16 | 26.22 | 12.38 | 1.66 | 90.34 | 37.89 | 15.19 | 31.64 | 38 | 91.63 | 20 |
11 | 60 | 60 | 50 | 0.75 | 1374.73 | -2.17 | 0.84 | 0.55 | 751.64 | 631.31 | 0.18 | 58.50 | 2.43 | 24.40 | 14.99 | 1.14 | 80.10 | 31.90 | 17.53 | 22.27 | 33 | 82.79 | 16 |
12 | 40 | 60 | 50 | 0.75 | 889.14 | -0.97 | 0.83 | 0.56 | 495.18 | 410.31 | 0.19 | 62.83 | 2.04 | 24.05 | 17.78 | 2.01 | 79.58 | 37.42 | 11.88 | 20.48 | 42 | 84.46 | 17 |
13 | 50 | 50 | 50 | 0.75 | 1828.27 | -1.74 | 0.84 | 0.55 | 997.71 | 836.14 | 0.18 | 46.66 | 3.40 | 18.16 | 18.64 | 1.66 | 77.84 | 36.88 | 13.93 | 22.36 | 36 | 87.98 | 21 |
14 | 50 | 40 | 60 | 0.75 | 1614.36 | -0.94 | 0.84 | 0.56 | 902.19 | 760.58 | 0.19 | 67.82 | 2.85 | 29.42 | 18.88 | 2.45 | 79.18 | 37.72 | 9.74 | 19.44 | 35 | 83.19 | 17.5 |
15 | 60 | 50 | 50 | 0.88 | 1284.56 | -3.20 | 0.78 | 0.52 | 665.40 | 517.79 | 0.14 | 72.31 | 1.63 | 31.48 | 22.41 | 1.75 | 80.97 | 36.89 | 16.61 | 35.61 | 39 | 88.95 | 18 |
16 | 50 | 40 | 40 | 0.75 | 1941.43 | -1.44 | 0.84 | 0.55 | 1058.63 | 885.31 | 0.17 | 78.30 | 1.10 | 31.91 | 27.99 | 1.40 | 91.38 | 31.69 | 11.47 | 26.62 | 35 | 95.41 | 15.5 |
17 | 50 | 40 | 50 | 0.63 | 1200.52 | -6.41 | 0.84 | 0.55 | 659.88 | 552.85 | 0.18 | 70.45 | 1.10 | 31.01 | 20.48 | 1.66 | 93.05 | 37.59 | 13.67 | 35.51 | 32 | 82.55 | 21 |
18 | 50 | 60 | 60 | 0.75 | 781.97 | -10.40 | 0.85 | 0.56 | 436.68 | 371.61 | 0.18 | 66.95 | 0.06 | 26.20 | 17.55 | 1.49 | 95.60 | 37.56 | 11.26 | 26.98 | 37 | 83.34 | 13.5 |
19 | 50 | 50 | 50 | 0.75 | 1828.27 | -1.74 | 0.84 | 0.55 | 997.71 | 836.14 | 0.18 | 46.66 | 3.40 | 18.16 | 16.64 | 1.66 | 77.84 | 36.88 | 13.93 | 22.36 | 36 | 87.98 | 21 |
20 | 40 | 50 | 50 | 0.63 | 1058.95 | -0.62 | 0.82 | 0.55 | 582.71 | 480.64 | 0.18 | 63.27 | 0.44 | 28.41 | 15.91 | 1.31 | 87.21 | 35.84 | 18.44 | 35.83 | 36 | 81.35 | 15 |
21 | 60 | 50 | 50 | 0.63 | 1631.72 | -2.40 | 0.82 | 0.55 | 894.86 | 731.25 | 0.16 | 47.24 | 1.26 | 18.62 | 16.99 | 1.31 | 80.45 | 36.70 | 17.49 | 29.27 | 42 | 89.24 | 13.5 |
22 | 50 | 50 | 40 | 0.88 | 1590.44 | -3.95 | 0.83 | 0.55 | 880.65 | 731.76 | 0.18 | 68.03 | 3.11 | 30.81 | 19.10 | 1.49 | 91.78 | 39.03 | 6.73 | 18.73 | 33 | 95.47 | 22 |
23 | 50 | 50 | 50 | 0.75 | 1953.03 | -0.94 | 0.84 | 0.54 | 1063.70 | 893.56 | 0.18 | 74.57 | 0.50 | 32.16 | 24.25 | 1.88 | 83.74 | 37.26 | 11.07 | 26.01 | 38 | 85.74 | 19 |
24 | 50 | 50 | 60 | 0.88 | 1196.24 | -0.70 | 0.84 | 0.55 | 661.65 | 553.66 | 0.18 | 78.00 | 0.63 | 31.75 | 27.58 | 1.88 | 92.48 | 38.00 | 9.07 | 22.93 | 36 | 82.12 | 17 |
25 | 50 | 50 | 50 | 0.75 | 1953.03 | -0.94 | 0.84 | 0.54 | 1063.70 | 893.56 | 0.18 | 74.57 | 0.50 | 32.16 | 24.25 | 1.88 | 83.74 | 37.26 | 11.07 | 26.01 | 38 | 85.74 | 19 |
26 | 50 | 60 | 50 | 0.63 | 1920.91 | -3.30 | 0.84 | 0.56 | 1082.32 | 905.49 | 0.18 | 60.25 | -0.70 | 24.08 | 14.61 | 1.66 | 82.94 | 36.93 | 12.45 | 21.21 | 40 | 82.68 | 17.5 |
27 | 50 | 60 | 40 | 0.75 | 2592.37 | -0.45 | 0.84 | 0.55 | 1420.48 | 1191.78 | 0.18 | 70.59 | 1.55 | 28.36 | 20.96 | 1.75 | 77.50 | 37.47 | 17.60 | 20.27 | 35 | 81.92 | 20.5 |
28 | 50 | 50 | 40 | 0.63 | 1384.35 | -1.54 | 0.78 | 0.53 | 729.24 | 571.65 | 0.15 | 69.37 | 2.07 | 31.74 | 19.86 | 1.23 | 97.28 | 31.24 | 19.24 | 20.14 | 36 | 94.17 | 19.5 |
29 | 40 | 40 | 50 | 0.75 | 1826.97 | -2.85 | 0.83 | 0.55 | 1003.09 | 832.33 | 0.18 | 61.64 | 2.38 | 23.42 | 17.42 | 1.49 | 88.31 | 37.81 | 15.52 | 34.80 | 34 | 90.79 | 18 |
表4
旋转成分矩阵"
指标Indicator | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 |
---|---|---|---|---|---|---|
含糖量Sugar content | 0.187 | -0.038 | 0.856 | -0.104 | 0.106 | 0.068 |
可滴定酸Titratable acid | 0.341 | 0.204 | -0.171 | -0.062 | 0.632 | -0.063 |
L* | 0.057 | 0.960 | 0.086 | -0.186 | -0.058 | 0.043 |
a* | -0.009 | -0.532 | 0.387 | 0.065 | 0.601 | -0.075 |
b* | 0.056 | 0.882 | 0.254 | 0.123 | 0.021 | 0.095 |
ΔE | 0.030 | 0.860 | -0.125 | -0.248 | 0.176 | -0.162 |
硬度Hardness | 0.117 | 0.104 | 0.233 | 0.025 | 0.562 | 0.500 |
黏性Adhesiveness | -0.042 | -0.027 | -0.027 | -0.059 | 0.833 | 0.118 |
弹性Springiness | 0.904 | 0.047 | -0.039 | -0.107 | -0.079 | 0.048 |
黏聚性Cohesiveness | 0.835 | 0.029 | 0.065 | 0.163 | 0.132 | -0.289 |
胶黏性Gumminess | 0.783 | 0.018 | 0.109 | -0.052 | 0.059 | 0.414 |
咀嚼性Chewiness | 0.844 | 0.043 | 0.092 | -0.082 | 0.050 | 0.383 |
回复性Resilience | 0.970 | 0.031 | 0.079 | 0.018 | 0.152 | -0.035 |
叶绿素保存率Chlorophyll preservation rate | -0.041 | 0.221 | 0.809 | 0.057 | -0.234 | -0.277 |
维生素C保存率Vitamin C preservation rate | -0.134 | 0.022 | 0.326 | -0.044 | -0.079 | -0.754 |
TSS | -0.073 | -0.039 | -0.434 | 0.379 | -0.155 | 0.114 |
WL | -0.010 | -0.005 | 0.049 | 0.931 | -0.054 | 0.024 |
SG | -0.006 | -0.273 | -0.179 | 0.911 | 0.041 | -0.042 |
表5
各指标的回归方程系数显著性检验结果"
变异来源 Source | P值 P value | ||||||
---|---|---|---|---|---|---|---|
Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | |
模型Model | <0.0001 | 0.0005 | <0.0001 | 0.0078 | 0.0004 | 0.0025 | 0.0396 |
A | <0.0001 | 0.6991 | 0.0347 | 0.2509 | 0.0058 | 0.6519 | 0.2423 |
B | 0.3429 | 0.0049 | 0.0505 | 0.9331 | 0.7939 | 0.0034 | 0.4581 |
C | 0.0007 | 0.0041 | <0.0001 | 0.7845 | 0.2815 | 0.0001 | 0.0026 |
D | 0.8851 | 0.0049 | 0.1385 | 0.3448 | 0.0742 | 0.6668 | 0.3753 |
AB | 0.6548 | <0.0001 | 0.0282 | 0.626 | 0.6977 | ||
AC | 0.0531 | 0.0538 | 0.0801 | 0.6059 | 0.2075 | ||
AD | 0.0658 | 0.3979 | 0.0149 | 0.046 | 0.1964 | 0.168 | |
BC | 0.2957 | < 0.0001 | 0.0655 | 0.201 | 0.191 | 0.0321 | |
BD | 0.0014 | 0.082 | 0.4654 | 0.7122 | 0.254 | ||
CD | 0.0023 | <0.0001 | 0.3522 | 0.0945 | 0.7954 | ||
A2 | <0.0001 | 0.0034 | 0.001 | 0.0915 | 0.0003 | 0.0173 | |
B2 | 0.0003 | 0.3097 | 0.0745 | 0.702 | 0.2886 | 0.0559 | 0.2562 |
C2 | 0.0046 | 0.0002 | 0.0251 | 0.7761 | 0.2562 | ||
D2 | 0.0013 | 0.9418 | 0.002 | 0.7433 | 0.0845 | ||
失拟项 Lack of fit | 0.059 | 0.919 | 0.2937 | 0.1032 | 0.5381 | 0.053 | 0.1061 |
表6
回归方程预测效果表"
指标 Indicator | 回复性 Resilience | ΔE | 含糖量 Sugar content (%) | WL (%) | 可滴定酸 Titratable acid (%) | 维生素C保存率 Vitamin C preservation rate (%) | 单位能耗 Unit energy consumption (kJ·g-1) |
---|---|---|---|---|---|---|---|
理论预测值 Theoretical predicted value | 0.172 | 15.51 | 35.03 | 27.85 | 1.58 | 92.23 | 18.15 |
实测值 Measured value | 0.179 | 14.88 | 36.49 | 28.94 | 1.65 | 91.63 | 19 |
相对误差 Relative error (%) | 4.07 | -4.06 | 4.17 | 3.91 | 4.43 | -0.65 | 4.68 |
[1] |
张计育, 莫正海, 黄胜男, 郭忠仁 . 21世纪以来世界猕猴桃产业发展以及中国猕猴桃贸易与国际竞争力分析. 中国农学通报, 2014,30(23):48-55.
doi: 10.11924/j.issn.1000-6850.2013-2887 |
ZHANG J Y, MO Z H, HUANG S N, GUO Z R . Development of world Kiwifruit industry since the 21st century and analysis of Chinese Kiwifruit trade and international competitiveness. Chinese Agricultural Science Bulletin, 2014,30(23):48-55. (in Chinese)
doi: 10.11924/j.issn.1000-6850.2013-2887 |
|
[2] |
杨天歌, 邓红, 李涵, 孟永宏, 雷佳蕾, 马婧, 郭玉蓉 . 超高压杀菌处理冷破碎猕猴桃果浆的条件优化及其贮藏期杀菌效果. 中国农业科学, 2018,51(7):1368-1377.
doi: 10.3864/j.issn.0578-1752.2018.07.014 |
YANG T G, DENG H, LI H, MENG Y H, LEI J L, MA J, GUO Y R . Optimization of ultra-high pressure sterilization conditions on the Kiwi Fruit Pulp produced by cold crushing method and its sterilization effect during storage period. Scientia Agricultura Sinica, 2018,51(7):1368-1377. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.07.014 |
|
[3] | 李宁, 朱文学, 白喜婷, 马怡童 . 牡丹花脯超声渗糖工艺优化及其质构特性的对比分析. 食品与机械, 2017,33(9):173-177. |
LI N, ZHU W X, BAI X T, MA Y T . Optimization on ultrasonic sugar permeability process and comparative analysis of textural properties of peony preserves. Food and machinery, 2017,33(9):173-177. (in Chinese) | |
[4] |
MCCLEMENTS D J . Advances in the application of ultrasound in food analysis and processing. Trends in Food Science & Technology, 1995,6(9):293-299.
doi: 10.1016/S0924-2244(00)89139-6 |
[5] |
FERNANDES F A N, GALLAO M I, RODRIGUES S . Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 2009,90(2):186-190.
doi: 10.1016/j.jfoodeng.2008.06.021 |
[6] | CORREA J L G, JUSTUS A, OLIVEIRA L F D, ALVES G E . Osmotic dehydration of Tomato assisted by ultrasound: evaluation of the liquid media on mass transfer and product quality. International Journal of Food Engineering, 2015,11(4):505-516. |
[7] |
LI H, ZHAO C P, GUO Y H, AN K J, DING S H, WANG Z F . Mass transfer evaluation of ultrasonic osmotic dehydration of cherry tomatoes in sucrose and salt solutions. International Journal of Food Science and Technology, 2012,47(5):954-960.
doi: 10.1111/j.1365-2621.2011.02927.x |
[8] |
XIN Y, ZHANG M, ADHIKARI B . Effect of trehalose and ultrasound-assisted osmotic dehydration on the state of water and glass transition temperature of broccoli (Brassica oleracea L. var. botrytis L.). Journal of Food Engineering, 2013,119(3):640-647.
doi: 10.1016/j.jfoodeng.2013.06.035 |
[9] |
LIU Y H, CHONG C J, WU J Y, MIAO S, LUO L, LI X . Ultrasound assisted osmotic dehydration pretreatment on carrot followed by hot-air drying //International Conference on Advanced Mechatronic Systems (ICAMechS 2013), Luoyang, China, 2013: 634-637.
doi: 10.1109/ICAMechS.2013.6681719 |
[10] |
GOULA A M, KOKOLAKI M, DAFTSIOU E . Use of ultrasound for osmotic dehydration. The case of potatoes. Food and Bioproducts Processing, 2017,105:157-170.
doi: 10.1016/j.fbp.2017.07.008 |
[11] |
CARCEL J A, BENEDITO J, ROSSELLO C, MULET A . Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 2007,78(2):472-479.
doi: 10.1016/j.jfoodeng.2005.10.018 |
[12] |
FERNANDES F A N, RODRIGUES S . Ultrasound as pre-treatment for drying of fruits: dehydration of banana. Journal of Food Engineering, 2007,82(2):261-267.
doi: 10.1016/j.jfoodeng.2007.02.032 |
[13] |
CHENG X F, ZHANG M, ADHIKARI B, ISLAM M N . Effect of power ultrasound and pulsed vacuum treatments on the dehydration kinetics, distribution, and status of water in osmotically dehydrated strawberry: a combined NMR and DSC study. Food and Bioprocess Technology, 2014,7(10):2782-2792.
doi: 10.1007/s11947-014-1355-1 |
[14] |
KUCNER A, KLEWICKI R, SOJKA M . The influence of selected osmotic dehydration and pretreatment parameters on dry matter and polyphenol content in highbush blueberry (Vaccinium corymbosum L.) fruits. Food and Bioprocess Technology, 2013,6(8):2031-2047.
doi: 10.1007/s11947-012-0997-0 |
[15] |
NOWACKA M, TYLEWICZ U, LAGHI L, ROSA M D, WITROWA- RAJCHERT D . Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chemistry, 2014,144(2):18-25.
doi: 10.1016/j.foodchem.2013.05.129 pmid: 24099537 |
[16] |
BELLARY A N, RASTOGI N K . Effect of hypotonic and hypertonic solutions on impregnation of curcuminoids in coconut slices. Innovative Food Science & Emerging Technologies, 2012,16(39):33-40.
doi: 10.1016/j.ifset.2012.04.003 |
[17] | 马空军, 贾殿赠, 包文忠, 赵文新, 靳冬民, 孙文磊 . 超声场强化渗透脱水传质机理模型研究, 食品科学, 2011,32(13):94-101. |
MA K J, JIA D Z, BAO W Z, ZHAO W X, JIN D M, SUN W L . Mass transfer mechanism and mathematical model for ultrasonic-enhanced osmotic dehydration. Food science, 2011,32(13):94-101. (in Chinese) | |
[18] |
李军生, 何仁, 侯革非, 阎柳娟 . 超声波对果蔬渗糖及组织细胞的影响. 食品与发酵工业, 2002,28(8):32-36.
doi: 10.3321/j.issn:0253-990X.2002.08.008 |
LI J S, HE R, HOU G F, YAN L J . Effect of ultrasonic wave on sugar permeability and cell tissue completeness of candied fruit and vegetable. Food and fermentation industry, 2002,28(8):32-36. (in Chinese)
doi: 10.3321/j.issn:0253-990X.2002.08.008 |
|
[19] |
李兴武, 章黎黎 . 渗糖方式对脆红李果脯品质及香气的影响. 食品研究与开发, 2017,38(21):79-84.
doi: 10.3969/j.issn.1005-6521.2017.21.016 |
LI X W, ZHANG L L . Effects of infiltration method on the quality and aroma of crisp red plum. Food Research and Development, 2017,38(21):79-84. (in Chinese)
doi: 10.3969/j.issn.1005-6521.2017.21.016 |
|
[20] |
尹晓峰, 杨明金, 张引航, 高博, 谢守勇, 杨玲 . 辣椒渗透脱水处理及渗后热风干燥特性及品质分析. 食品科学, 2017,38(1):27-34.
doi: 10.7506/spkx1002-6630-201701005 |
YIN X F, YANG M J, ZHANG Y H, GAO B, XIE S Y, YANG L . Characterization of osmotic dehydration and subsequent hot-air drying of Chili pepper. Food science, 2017,38(1):27-34. (in Chinese)
doi: 10.7506/spkx1002-6630-201701005 |
|
[21] |
孙海涛, 邵信儒, 姜瑞平, 徐晶, 孙艳雪, 朱炎, 朱俊义 . 响应面试验优化超声渗糖制备野生软枣猕猴桃果脯工艺及其质构分析. 食品科学, 2015,36(20):49-55.
doi: 10.7506/spkx1002-6630-201520009 |
SUN H T, SHAO X R, JIANG R P, XU J, SUN Y X, ZHU Y, ZHU J Y . Optimization of ultrasound-assisted sugar permeation for production of preserved Actinidia arguta by response surface methodology and texture analysis. Food science, 2015,36(20):49-55. (in Chinese)
doi: 10.7506/spkx1002-6630-201520009 |
|
[22] | 李薇 . 低糖猕猴桃果脯的加工工艺与工厂设计研究[D]. 西安: 西北大学, 2013. |
LI W . Study on processing technology and factory design of low sugar Kiwi fruit[D]. Xi’an: Northwest University, 2013. (in Chinese) | |
[23] |
李文峰, 肖旭霖, 王玮 . 紫薯气体射流冲击干燥效率及干燥模型的建立. 中国农业科学, 2013,46(2):356-366.
doi: 10.3864/j.issn.0578-1752.2013.02.015 |
LI W F, XIAO X L, WANG W . Drying characteristics and model of purple sweet potato in air-impingement jet dryer. Scientia Agricultura Sinica, 2013,46(2):356-366. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.02.015 |
|
[24] |
赵洪卫, 韩东海, 宋曙辉, 常冬 . 小型西瓜果实成熟度表征因子筛选. 农业工程学报, 2012,28(17):281-286.
doi: 10.3969/j.issn.1002-6819.2012.17.041 |
ZHAO H W, HAN D H, SONG S H, CHANG D . Screening of maturity characterization factors for mini watermelon fruit. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(17):281-286. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2012.17.041 |
|
[25] |
靳志强, 王顺喜 . 基于品质评价的玉米微波灭霉工艺参数选择. 农业机械学报, 2013,44(4):163-170.
doi: 10.6041/j.issn.1000-1298.2013.04.029 |
JIN Z Q, WANG S X . Parameter selection of mould inactivation by microwave processing based on quality evaluation of maize. Journal of Agricultural Machinery, 2013,44(4):163-170. (in Chinese)
doi: 10.6041/j.issn.1000-1298.2013.04.029 |
|
[26] | 张唐伟, 贺继峰, 余耀斌, 次顿 . 岗巴羊羊肉营养品质及其因子分析. 食品工业科技, 2018,39(8):279-284. |
ZHANG T W, HE J F, YU Y B, CI D . Mutton quality and its factor analysis of Gangba sheep. Science and Technology of Food Industry, 2018,39(8):279-284. (in Chinese) | |
[27] |
吕健, 刘璇, 毕金峰, 周林燕, 吴昕烨 . 桃变温压差膨化脆片品质评价研究. 中国农业科学, 2016,49(4):802-812.
doi: 10.3864/j.issn.0578-1752.2016.04.019 |
LÜ J, LIU X, BI J F, ZHOU L Y, WU X Y . Research on the quality evaluation for peach and nectarine chips by explosion puffing drying. Scientia Agricultura Sinica, 2016,49(4):802-812. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.04.019 |
|
[28] | 马庆华, 李永红, 梁丽松, 李琴, 王海, 许元峰, 孙玉波, 王贵禧 . 冬枣优良单株果实品质的因子分析与综合评价. 中国农业科学, 2010,43(12):2491-2499. |
MA Q H, LI Y H, LIANG L S, LI Q, WANG H, XU Y F, SUN Y B, WANG G X . Factors analysis and synthetical evaluation of the fruit quality of Dongzao (Ziziphus jujuba Mill. Dongzao) advanced selections. Scientia Agricultura Sinica, 2010,43(12):2491-2499. (in Chinese) | |
[29] | 曾凡杰, 孟莉, 吕远平 . 不同前处理和冻结方式对猕猴桃片干制品品质的影响. 食品科技, 2017,42(8):63-68. |
ZENG F J, MENG L, LV Y P . Effect of different pre-processing and freezing methods on the dry products quality of kiwi fruit slices. Food Technology, 2017,42(8):63-68. (in Chinese) | |
[30] |
杨玲, 张彩霞, 丛佩华, 程云, 王强 . 基于质地多面分析法对不同苹果品种果肉质构特性的分析. 食品科学, 2014,35(21):57-62.
doi: 10.7506/spkx1002-6630-201421012 |
YANG L, ZHANG C X, CONG P H, CHENG Y, WANG Q . Texture parameters of different apple varieties’ flesh as measured by texture profile analysis. Food Science, 2014,35(21):57-62. (in Chinese)
doi: 10.7506/spkx1002-6630-201421012 |
|
[31] | 张鹏飞, 吕健, 毕金峰, 刘璇, 周林燕, 关云静, 肖敏 . 超声及超声渗透预处理对红外辐射干燥特性研究. 现代食品科技, 2016,32(11):197-202. |
ZHANG P F, LV J, BI J F, LIU X, ZHOU L Y, GUAN Y J, XIAO M . Effect of ultrasound and ultrasound-assisted osmotic dehydration on infrared radiation drying characteristics of peach slices. Modern Food Technology, 2016,32(11):197-202. (in Chinese) | |
[32] |
李茜, 高纯阳, 安辛欣, 胡秋辉 . 杏鲍菇脆片加工中超声浸渍工艺的优化. 食品工业科技, 2014,35(14):287-292.
doi: 10.13386/j.issn1002-0306.2014.14.055 |
LI Q, GAO C Y, AN X X, HU Q H . Optimization of ultrasonic immersion technology for Pleurotus eryngii chips. Food Industry Technology, 2014,35(14):287-292. (in Chinese)
doi: 10.13386/j.issn1002-0306.2014.14.055 |
|
[33] |
MULET A, CÁRCEL J A, SANJUÁN N, BON J . New food drying technologies-use of ultrasound. Food Science and Technology International, 2003,9(3):215-221.
doi: 10.1177/1082013203034641 |
[34] | 罗登林, 杨园园, 吴若言, 徐宝成, 聂英, 李佩艳, 刘建学 . 超声辅助面团醒发对面条品质的影响. 食品科学, 2019,40(1):102-107. |
LUO D L, YANG Y Y, WU N Y, XU B C, NIE Y, LI P Y, LIU J X . Effect of power ultrasound assisted dough resting on the quality of noodles. Food Science, 2019,40(1):102-107. (in Chinese) | |
[35] |
岳田利, 周郑坤, 袁亚宏, 高振鹏, 张晓荣 . 苹果中有机氯农药残留的超声波去除条件优化. 农业工程学报, 2009,25(12):324-330.
doi: 10.3969/j.issn.1002-6819.2009.12.056 |
YUE T L, ZHOU Z K, YUAN Y H, GAO Z P, ZHANG X R . Optimization of conditions for organochlorine pesticide residues removal in apples using ultrasonic. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(12):324-330. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2009.12.056 |
[1] | 朱大伟,章林平,陈铭学,方长云,于永红,郑小龙,邵雅芳. 中国优质稻品种品质及食味感官评分值的特征[J]. 中国农业科学, 2022, 55(7): 1271-1283. |
[2] | 张晋龙,赵志博,刘巍,黄丽丽. 猕猴桃细菌性溃疡病菌T3SS关键效应蛋白基因致病功能[J]. 中国农业科学, 2022, 55(3): 503-513. |
[3] | 刘振蓉,赵武奇,胡新中,贺刘成,陈月圆. 燕麦挂面制作过程中干燥工艺优化研究[J]. 中国农业科学, 2022, 55(24): 4927-4942. |
[4] | 胡光明,张琼,韩飞,李大卫,李作洲,汪志,赵婷婷,田华,刘小莉,钟彩虹. 猕猴桃属植物通用型SSR分子标记引物的筛选及应用[J]. 中国农业科学, 2022, 55(17): 3411-3425. |
[5] | 钟艳平,师立松,周瑢,高媛,何延庆,方圣,张秀荣,王林海,吴自明,张艳欣. 芝麻素高效提取检测技术的建立与高芝麻素种质的筛选[J]. 中国农业科学, 2022, 55(11): 2109-2120. |
[6] | 杜金婷,张雁,李雁,王佳佳,廖娜,钟立煌,骆碧群,林江. 超声耦合双水相体系提取茶皂素的工艺优化与机制探讨[J]. 中国农业科学, 2022, 55(1): 167-183. |
[7] | 王萱萱,刘春宇,谢贝昱,张淑淑,王丹阳,朱振元. 碱提甘蔗皮多糖提取工艺、初步结构及其对α-葡萄糖苷酶的抑制作用[J]. 中国农业科学, 2021, 54(12): 2653-2665. |
[8] | 古明辉,刘永峰,申倩,乔春艳. 猕猴桃多酚在山羊肉冷藏中延缓氧化和改善品质的作用[J]. 中国农业科学, 2020, 53(8): 1643-1654. |
[9] | 封琦,李朝政,高贵田,吴悠,肖妍,赵武奇,雷玉山. 三种酶对采后‘海沃德’和‘华特’猕猴桃 AsA的氧化作用[J]. 中国农业科学, 2020, 53(4): 811-822. |
[10] | 匡立学,聂继云,李银萍,程杨,沈友明. 中国不同地区‘富士’苹果品质评价[J]. 中国农业科学, 2020, 53(11): 2253-2263. |
[11] | 冯新,赖瑞联,高敏霞,陈文光,吴如健,陈义挺. Adβgal-1和Adβgal-2克隆及其在猕猴桃果实软化中的作用[J]. 中国农业科学, 2019, 52(2): 312-326. |
[12] | 贾梦科,吴忠,赵武奇,卢丹,张清安,张宝善,宋树杰. 气体射流冲击干燥苹果片的响应面试验及多目标优化[J]. 中国农业科学, 2019, 52(15): 2695-2705. |
[13] | 卢丹,赵武奇,曾祥媛,吴妮,高贵田,张清安,张宝善,雷玉山. ‘海沃德’猕猴桃应力松弛特性与品质关系[J]. 中国农业科学, 2019, 52(14): 2548-2558. |
[14] | 张佳, 聂继云, 张惠, 李静, 李也. 越橘品质指标评价[J]. 中国农业科学, 2019, 52(12): 2128-2139. |
[15] | 高雪,章印,辛广,张博,穆晶晶,李漪濛,刘长江,孙晓荣,李斌. 不同成熟度软枣猕猴桃果实的划分标准及贮藏特性[J]. 中国农业科学, 2019, 52(10): 1784-1796. |
|