中国农业科学 ›› 2018, Vol. 51 ›› Issue (23): 4470-4484.doi: 10.3864/j.issn.0578-1752.2018.23.007
收稿日期:
2018-04-19
接受日期:
2018-08-02
出版日期:
2018-12-01
发布日期:
2018-12-12
基金资助:
SUN JianFei(),ZHENG JuFeng,CHENG Kun(
),YE Yi,ZHUANG Yuan,PAN GenXing
Received:
2018-04-19
Accepted:
2018-08-02
Online:
2018-12-01
Published:
2018-12-12
摘要:
【目的】秸秆热解炭化-生物质炭基肥-生态农业产业体系正在中国兴起。炭基肥通过替代化肥产生可观的温室气体减排量并显著增加土壤有机碳库,其规模化发展具有参与我国正在实施的自愿减排碳交易项目的明显潜力。本研究探讨构建生物质炭基肥项目固碳减排计量方法,为其大规模农业应用参与自愿减排碳交易提供科学依据和方法学支撑。【方法】根据自愿减排项目固碳减排计量方法学和农田固碳减排计量的逻辑框架,基于秸秆炭基肥项目发展的实地调查、已有炭基肥试验的固碳减排案例监测及文献统计,并参考已备案的农业减排方法学,从项目合格性、基准线确定、边界选择、关键排放源和土壤碳库确定、系统泄漏到净碳汇计量方法等方面探讨开发炭基肥项目固碳减排计量方法学,以分析炭基肥项目进行碳交易的可行性。【结果】秸秆炭基肥项目计量方法学的基准线情景为农田常规施肥管理,但需针对不同农田经营模式而确定项目边界(例如分散农民为经营主体的田块模式和工厂-农田的集约化企业运营模式),分别考虑农田氧化亚氮和甲烷的排放和土壤有机碳库来审视项目的关键排放源和碳库,考虑项目的泄漏可能包括农民运输炭基肥导致的额外排放或原有秸秆利用方式发生改变导致的额外排放。农作物炭基肥案例分析表明:以农民为主体的炭基肥项目,单个生长季的冬小麦或水稻生产可分别产生1 440和282 kg CO2-eq·hm -2的减排量;而“工厂-农田”集约化模式中,在未对炭基肥生产工艺进行优化的条件下(副产物未被循环利用),炭基肥生产过程带来的温室气体排放将抵消部分炭基肥应用的农田碳汇量;如对优化炭基肥生产工艺后,单个生长季的冬小麦和水稻生产可分别产生1 479和340 kg CO2-eq·hm -2的净碳汇量。【结论】构建了一套用于量化炭基肥项目净碳汇量的计量方法,可以合理地量化炭基肥农田应用项目产生的净碳汇量。本研究发展的方法学适用炭基肥农业固碳减排项目,量化结果显示炭基肥项目可带来可观的减排量,且旱作农田的净碳汇效应高于稻作农田,优化炭基肥生产工艺条件下工厂-农田集约化运营模式获得的碳汇量显著高于未优化工艺条件下的农民主体的项目模式。研究表明未来应当关注和开发区域尺度不同类型炭基肥施用下氧化亚氮和甲烷减排因子以及土壤固碳因子。
孙建飞,郑聚锋,程琨,叶仪,庄园,潘根兴. 面向自愿减排碳交易的生物质炭基肥固碳减排计量方法研究[J]. 中国农业科学, 2018, 51(23): 4470-4484.
SUN JianFei,ZHENG JuFeng,CHENG Kun,YE Yi,ZHUANG Yuan,PAN GenXing. Quantifying Carbon Sink by Biochar Compound Fertilizer Project for Domestic Voluntary Carbon Trading in Agriculture[J]. Scientia Agricultura Sinica, 2018, 51(23): 4470-4484.
表1
用于秸秆炭基肥固碳减排计量的秸秆收集及生产环节能耗参数"
原料成本参数 Feedstock cost | |||
---|---|---|---|
收储到工厂 Storage to factory distance | 运输油耗[ Fuel consumption | 柴油排放因子[ Diesel emission factor | 电力排放因子[ Electricity emission factor |
16 km | 1.60 L·t-1 | 0.00263 t CO2-eq·L-1 | 0.928 kg·kWh-1 |
生物质炭生产的能流[ | |||
电力消耗 Electricity consumption | 原料消耗 Feedstock | 产率 Biochar yield | 气体发电 Syngas gas generated power |
1500 MWh | 30000 t | 35% | 9 GWh |
肥料制造能耗 Energy consumption in fertilizer manufacturing | |||
类型 Fertilizer type | 产量 Output | 耗电 Power consumption | 滚筒造粒功率 Drum granulation power |
炭基肥 Biochar-based compound fertilizer | 2.94 t·h-1 | 31.3 kWh·t-1 | 7.48 kWh·t-1 |
普通复合肥 Chemical Compound fertilizer | 5.29 t·h-1 | 28.0 kWh·t-1 | 4.16 kWh·t-1 |
表2
案例农田肥料施用数据"
作物种植类型 Crop type | 基线/项目 Baseline/Project | 炭基肥料用量 Biochar compound fertilizer (kg·hm-2) | 普通肥料用量 Chemical fertilizer (kg·hm-2) |
---|---|---|---|
冬小麦 Winter wheat | 基线 Baseline | 0 | N:180.75; P2O5:50.63; K2O:50 |
项目活动Project activity | Biochar:72; N:54; P2O5:27; K2O:30 | N:120.23; P2O5:50.63; K2O:50 | |
水稻 Paddy rice | 基线 Baseline | 0 | N: 208.88; P2O5:72; K2O:72 |
项目活动 Project activity | Biochar:108; N:81; P2O5:40.5; K2O:45 | N:186 |
表3
基于边界A情景的项目净碳汇量"
作物类型 Crop type | 基线/项目 Baseline/Project | 温室气体排放GHG emissions (kg CO2-eq·hm-2) | 净碳汇量 Net carbon sink (kg CO2-eq·hm-2) | |||
---|---|---|---|---|---|---|
ΔSOC | N2O | CH4 | 泄漏 Leakage | |||
小麦 Wheat | 基线 Baseline | 0 | 2114.70 | 0 | 0 | 1439.78 |
项目活动 Project activity | -96.23 | 771.15 | 0 | 0 | ||
水稻 Paddy rice | 基线 Baseline | 0 | 188.15 | 288.96 | 0 | 281.58 |
项目活动 Project activity | -144.34 | 124.55 | 215.32 | 0 |
表5
基于边界B情景的项目净碳汇量"
作物类型 Crop type | 基线/项目 Baseline/Project | 温室气体排放 GHG emissions (kg CO2-eq·hm-2) | 净碳汇量 Net carbon sink (kg CO2-eq·hm-2) | ||||
---|---|---|---|---|---|---|---|
ΔSOC | N2O | CH4 | 炭基肥 Biochar compound fertilizer | 泄漏 Leakage | |||
小麦 Wheat | 基线 Baseline | 0 | 2114.70 | 0 | 0 | 0 | 1479.01/1329.57 |
项目活动 Project activity | -96.23 | 771.15 | 0 | -39.23/30.71 | 0 | ||
水稻 Paddy rice | 基线 Baseline | 0 | 188.15 | 288.96 | 0 | 0 | 340.43/235.52 |
项目活动 Project activity | -114.34 | 124.55 | 215.32 | -58.85/40.06 | 0 |
[1] | 冯相昭, 李丽平, 田春秀, 尚宏博 . 中国CDM项目对可持续发展的影响评价. 中国人口. 资源与环境, 2010,20(7):129-135. |
FENG X Z, LI L P, TIAN C X, SHANG H B . Assessing the Impacts of CDM Projects Implemented in China on Sustainable Development. China Population Resources and Environment, 2010,20(7):129-135. (in Chinese) | |
[2] |
SMITH P, HOUSE J I, BUSTAMANTE M, SOBOCKA J, HARPER R, PAN G X, WEST P, CLARK J M, ADHYA T, RUMPEL C, PAUSTIAN K, KUIKMAN P, GRIFFITHS R I, ASAKAWA S, BONDEAU A, JAIN A, MEERSMANS J, PUGH T S A . Global change pressures on soils from land use and management. Global Change Biology, 2016,22(3):1008-1028. DOI: 10.1111/gcb.13068.
doi: 10.1111/gcb.13068 pmid: 26301476 |
[3] |
丁丁 . 开展国内自愿减排交易的理论与实践研究. 中国能源, 2011,33(2):33-37.
doi: 10.3969/j.issn.1003-2355.2011.02.007 |
DING D . Theoretical and practical research on conducting domestic voluntary emission reduction transactions. Energy and Environment, 2011,33(2):33-37. (in Chinese)
doi: 10.3969/j.issn.1003-2355.2011.02.007 |
|
[4] | 国家发展和改革委员会. 中华人民共和国国家发展和改革委员会公告 [EB/OL]. , 2017-03-14. |
National Development Reform Commission. Announcement of the National Development and Reform Commission of the People’s Republic of China[EB/OL]. , 2017-03-14.(in Chinese) | |
[5] |
SMITH P, MARTINO D, CAI Z, GWARY D, JANZEN H, KUMAR P, MCCARL B, OGLE S, O’MARA F, RICE C, SCHOLES BM, SIROTENKO O, HOWDEN M, MCALLISTER T, PAN G X, ROMANENKOV V, SCHNEIDER U, TOWPRAYOON S, WATTENBACH M, SMITH J . Greenhouse gas mitigation in agriculture. Philosophical Transactions Biological Sciences, 2008,363(1492):789-813.
doi: 10.1098/rstb.2007.2184 pmid: 2610110 |
[6] | 王英姿, 黄毅斌, 翁伯琦, 王义祥 . 中国农业CDM发展现状及潜力研究. 福建农林大学学报, 2010,13(4):26-29. |
WANG Y Z, HUANG Y B, WENG B Q, WANG Y X . Research on development status and potential of agricultural CDM in China. Journal of Fujian Agriculture and Forestry University, 2010,13(4):26-29. (in Chinese) | |
[7] |
潘根兴, 李恋卿, 刘晓雨, 程琨, 卞荣军, 吉春颖, 郑聚峰, 张旭辉, 郑金伟 . 热裂解生物质炭产业化: 秸秆禁烧与绿色农业新途径. 科技导报, 2015,33(13):92-101.
doi: 10.3981/j.issn.1000-7857.2015.13.015 |
PAN G X, LI L Q, LIU X Y, CHENG K, BIAN R J, JI C Y, ZHENG J F, ZHANG X H, ZHENG J W . Industrialization of biochar from biomass pyrolysis:A new option for straw burning ban and green agriculture of China. Science & Technology Review, 2015,33(13):92-101. (in Chinese)
doi: 10.3981/j.issn.1000-7857.2015.13.015 |
|
[8] |
WOOLF D, AMONETTE J E, STREETPERROTT F A, LEHMANN J, JOSEPH S . Sustainable biochar to mitigate global climate change. Nature Communications, 2010,1(5):56-65.
doi: 10.1038/ncomms1053 pmid: 20975722 |
[9] |
POEPLAU C . Carbon sequestration in agricultural soils via cultivation of cover crops, A meta-analysis. Agriculture Ecosystems & Environment. 2015,200:33-41.
doi: 10.1016/j.agee.2014.10.024 |
[10] |
CAYUELA M L, ZWIETEN L V, SINGH B P, JEFFERY S, ROIG A, SANCHEZ-MONEDERO M A . Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture Ecosystems & Environment, 2014,191:5-16.
doi: 10.1016/j.agee.2013.10.009 |
[11] |
LIU X Y, ZHANG A F, JI C Y, JOSEPH S, BIAN R J, LI L Q, PAN G X, PAZ-FERRERIO J . Biochar’s effect on crop productivity and the dependence on experimental conditions—A meta-analysis of literature data. Plant & Soil, 2013,373(1/2):583-594.
doi: 10.1007/s11104-013-1806-x |
[12] |
潘根兴, 林振衡, 李恋卿, 张阿凤, 郑金伟, 张旭辉 . 试论我国农业和农村有机废弃物生物质碳产业化. 中国农业科技导报, 2011,13(01):75-82.
doi: 10.3969/j.issn.1008-0864.2011.01.12 |
PAN G X, LIN Z H, LI L Q, ZHANG A F, ZHENG J W, ZHANG X H . Perspective on biomass carbon industrialization of organic waste from agriculture and rural areas in China. Journal of Agricultural Science and Technology, 2011,13(01):75-82. (in Chinese)
doi: 10.3969/j.issn.1008-0864.2011.01.12 |
|
[13] | 李正东, 陶金沙, 李恋卿, 潘根兴, 刘晓雨, 张旭辉, 郑聚锋, 郑金伟, 王家芳, 俞欣妍 . 生物质炭复合肥对小麦产量及温室气体排放的影响. 土壤通报, 2015,46(01):177-183. |
LI Z D, TAO J S, LI L Q, PAN G X, LIU X Y, ZHANG X H, ZHENG J F, ZHENG J W, WANG J F, YU X Y . Effects of biochar-based fertilizers on wheat yield and greenhouse gases emissions. Chinese Journal of Soil Science, 2015,46(01):177-183. (in Chinese) | |
[14] |
QIAN L, CHEN L, JOSEPH S, PAN G X, LI L Q, ZHENG J W, ZHANG X H, ZHENG J F, YU X Y, WANG J F . Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China. Carbon Management, 2014,5(2):145-154.
doi: 10.1080/17583004.2014.912866 |
[15] |
ZHENG J F, HAN J M, LIU Z W, XIA W B, ZHANG X H, LI L Q, LIU X Y, BIAN R J, CHENG K, ZHENG J W, PAN G X . Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production. Agriculture Ecosystems & Environment, 2017,241:70-78.
doi: 10.1016/j.agee.2017.02.034 |
[16] | 程琨, 潘根兴, 罗婷 . 测土配方施肥固碳减排计量方法指南. 北京: 中国标准出版社, 2012. |
CHENG K, PAN G X, LUO T. Quantifying Carbon Sequestration and Reduction in Greenhouse Gas Emission Under Recommended Fertilization Project Methodology Guide. Beijing: Standards Press of China, 2012. ( in Chinese) | |
[17] | 中国碳交易网 . 保护性耕作减排增汇项目方法学. .2016-06-27. |
China Carbon Trading Network . Conservation tillage emission reduction project methodology. .2016-06-27.(in Chinese) | |
[18] |
齐海云, 张一婷, 张尊举, 姚淑霞 . 清洁发展机制项目合格性识别方法. 环境保护, 2008(24):84-85.
doi: 10.3969/j.issn.0253-9705.2008.24.030 |
QI H Y, ZHANG Y T, ZHANG Z J, YAO S X . Clean development mechanism project compliance recognition method.Environmental Protection, 2008(24):84-85. (in Chinese)
doi: 10.3969/j.issn.0253-9705.2008.24.030 |
|
[19] |
黄山枫, 陆根法, 刘庆强 . CDM的项目合格性识别分析. 环境科学与管理, 2007(5):31-34.
doi: 10.3969/j.issn.1673-1212.2007.05.009 |
HUANG S F, LU G F, LIU Q Q . Analysis of project identification for eligibility in CDM.Environmental Science and Management, 2007(5):31-34. (in Chinese)
doi: 10.3969/j.issn.1673-1212.2007.05.009 |
|
[20] | 吕学都 . 清洁发展机制在中国. 北京: 清华大学出版社, 2004. |
LÜ X D. Clean Development Mechanism in China. Beijing: Tsinghua University Press, 2004. ( in Chinese) | |
[21] | 李玉娥, 董红敏, 万运帆, 秦晓波, 高清竹, 华珞 . 规模化养鸡场CDM项目减排及经济效益估算. 农业工程学报, 2009,25(1):194-198. |
LI Y E, DONG H M, WAN Y F, QIN X B, GAO Q Z, HUA L . Emission reduction from Clean Development Mechanism projects on intensive livestock farms and its economic benefits. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(1):194-198. (in Chinese) | |
[22] | 李晓 . 施用生物质炭及炭基肥对温室气体排放、玉米生长及土壤性质的影响.[D]. 南京: 南京农业大学, 2013. |
LI X . Effects of biochar and biochar-based fertilizer amendment on greenhouse gas emission, maize growth and soil properties[D]. Nanjing: Nanjing Agricultural University, 2013. ( in Chinese) | |
[23] | 陈琳, 乔志刚, 李恋卿, 潘根兴 . 施用生物质炭基肥对水稻产量及氮素利用的影响. 生态与农村环境学报, 2013,29(5):671-675. |
CHEN L, QIAO Z G, LI L Q, PAN G X . Effects of biochar-based fertilizers on rice yield and nitrogen use efficiency. Journal of Ecology and Rural Environment, 2013,29(5):671-675. (in Chinese) | |
[24] |
杜衍红, 蒋恩臣, 王明峰, 许细微, 郭信辉, 史冬冬, 李世博 . 炭基缓释肥对玉米生长的影响研究. 中国农学通报, 2015,31(12):72-76.
doi: 10.11924/j.issn.1000-6850.2014-2393 |
DU Y H, JIANG E C, WANG M F, XU X W, GUO X H, SHI D D, LI S B . Study on growth and yield of maize with charcoal based slow-release fertilizer. Chinese Agricultural Science Bulletin, 2015,31(12):72-76. (in Chinese)
doi: 10.11924/j.issn.1000-6850.2014-2393 |
|
[25] |
方艳茹, 廖树华, 王林风, 任兰天, 谢光辉 . 小麦秸秆收储运模型的建立及成本分析研究. 中国农业大学学报, 2014,19(2):28-35.
doi: 10.11841/j.issn.1007-4333.2014.02.05 |
FANG Y R, LIAO S H, WANG L F, REN L T, XIE G H . Model establishment and cost analysis on wheat straw logistic system. Journal of China Agricultural University, 2014,19(2):28-35. (in Chinese)
doi: 10.11841/j.issn.1007-4333.2014.02.05 |
|
[26] | BP China, 2007. Calculator of Carbon Emission. . |
[27] |
JI C Y, CHENG K, NAYAK D, PAN G X . Environmental and economic assessment of crop residue competitive utilization for biochar, briquette fuel and combined heat and power generation. Journal of Cleaner Production, 2018,192:916-923.
doi: 10.1016/j.jclepro.2018.05.026 |
[28] | 国家发改委气候变化司 . 省级温室气体清单编制指南(试行). . |
Climate Change Division of National Development and Reform Commission. Guidelines for the provincial inventory of greenhouse gas(Trial). (in Chinese) | |
[29] | IBI ( 2013) ‘Standardized product definition and product testing guidelines for biochar that is used in soil’, IBI-STD-01.1, International Biochar Initiative, , accessed Augus. 12, 2013. |
[30] | 农业部新闻办公室 . 农业部办公厅关于推介发布秸秆农用十大模式的通知. , 2017-04-28. |
News Office of Ministry of Agriculture. The general office of the ministry of agriculture on promoting the release of ten models for straw agricultural use. , 2017-04-28.(in Chinese) | |
[31] |
潘根兴, 李恋卿, 刘晓雨, 程琨, 卞荣军, 吉春颖, 郑聚锋, 张旭辉, 郑金伟 . 热裂解生物质炭产业化:秸秆禁烧与绿色农业新途径. 科技导报, 2015,33(13):92-101.
doi: 10.3981/j.issn.1000-7857.2015.13.015 |
PAN G X, LI L Q, LIU X Y, CHENG K, BIAN R J, JI C Y, ZHENG J F, ZHENG X H, ZHENG J W . Industrialization of biochar from biomass pyrolysis: A new option for straw burning ban and green agriculture of China. Science & Technology Review, 2015,33(13):92-101. (in Chinese)
doi: 10.3981/j.issn.1000-7857.2015.13.015 |
|
[32] |
ZHANG X, BOL R, RAHN C, XIAO G, MENG F Q, WU W L . Agricultural sustainable intensification improved nitrogen use efficiency and maintained high crop yield during 1980-2014 in Northern China. Science of the Total Environment, 2017,61:596-597.
doi: 10.1016/j.scitotenv.2017.04.064 pmid: 28415005 |
[33] |
BURNEY J A, DAVIS S J, LOBELL D B . Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(26):12052-12057.
doi: 10.1073/pnas.0914216107 |
[34] |
LEHNDORFF E, ROTH P J, CAO Z H, AMELUNG W . Black carbon accrual during 2000 years of paddy-rice and non-paddy cropping in the Yangtze River Delta, China. Global Change Biology, 2014,20(6):1968-1978.
doi: 10.1111/gcb.12468 pmid: 24227744 |
[35] | ZIMMERMAN A R, GAO B. The Stability of Biochar in the Environment. Biochar and Soil Biota. Boca Raton. FL: CRC Press, 2013: 1-40. |
[36] |
SINGH N, ABIVEN S, TORN M S, SCHMIDT M . Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences, 2012,9(8):2847-2857.
doi: 10.5194/bg-9-2847-2012 |
[37] |
LEHMANN J, SKJEMSTAD J, SOHI S, CARTER J, BARSON M, FALLOON P, COLEMAN K, WOODBURY P, KRULL E . Australian climate-carbon cycle feedback reduced by soil black carbon. Nature Geoscience, 2008,1(12):832-835.
doi: 10.1038/ngeo358 |
[38] |
BOSCO S, BENE C D, GALLI M, REMORINI D, MASSAI R, BONARI E . Soil organic matter accounting in the carbon footprint analysis of the wine chain. International Journal of Life Cycle Assessment, 2013,18(5):973-989.
doi: 10.1007/s11367-013-0567-3 |
[39] |
LIU X Y, QU J J, LI L Q, ZHANG A F, ZHENG J F, ZHENG J W, PAN G X . Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies?—A cross site field experiment from South China. Ecological Engineering, 2012,42(9):168-173.
doi: 10.1016/j.ecoleng.2012.01.016 |
[40] |
LIU J Y, SHEN J L, LI Y, SU Y R, GE T D, JONES D L . Effects of biochar amendment on the net greenhouse gas emission and greenhouse gas intensity in a Chinese double rice cropping system. European Journal of Soil Biology, 2014,65:30-39.
doi: 10.1016/j.ejsobi.2014.09.001 |
[41] |
SHEN J L, TANG H, LIU J Y, WANG C, LI Y, HE T D, JONES D L, WU J S . Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems. Agriculture Ecosystems & Environment, 2014,188(4):264-274.
doi: 10.1016/j.agee.2014.03.002 |
[42] | 中华人民共和国统计局. 中国统计年鉴2016. 北京: 中国统计出版社, 2016. |
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook 2016. Beijing: China Statistics Press, 2016. ( in Chinese) | |
[43] |
CHENG K, PAN G X, SMITH P, LUO T, LI L Q, ZHENG J W, ZHANG X H, HAN X J, YAN M . Carbon footprint of China’s crop production-An estimation using agro-statistics data over 1993-2007. Agriculture Ecosystems & Environment, 2011,142(3/4):231-237.
doi: 10.1016/j.agee.2011.05.012 |
[44] |
HILLIER J, HAWES C, SQUIRE G, HILTON A, WALE S, SMITH P . The carbon footprints of food crop production. International Journal of Agricultural Sustainability. 2009,7(2):107-118.
doi: 10.3763/ijas.2009.0419 |
[45] |
HUANG Y, SASS R L, FRANK M. FISHER J . A semi‐empirical model of methane emission from flooded rice paddy soils. Global Change Biology, 1998,4(3):247-268.
doi: 10.1046/j.1365-2486.1998.00129.x |
[46] |
HUANG Y, ZHANG W, Zheng X H, LIU J, YU Y Q . Modeling methane emission from rice paddies with various agricultural practices. Journal of Geophysical Research Atmospheres, 2004,109(D8):1-12. DOI: 10.1029/2003JD004401.
doi: 10.1029/2003JD004401 |
[47] |
YAN X Y, CAI Z C, OHARA T, AKIMOTO H . Methane emission from rice fields in mainland China: Amount and seasonal and spatial distribution. Journal of Geophysical Research Atmospheres, 2003,108(D16):4505-4515. DOI: 10.1029/2002JD003182.
doi: 10.1029/2002JD003182 |
[48] |
ZOU J W, HUANG Y, ZHENG X H, WANG Y S . Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: Dependence on water regime. Atmospheric Environment, 2007,41(37):8030-8042.
doi: 10.1016/j.atmosenv.2007.06.049 |
[49] |
ZHENG X H, FU C B, XU X K, YAN X D, HUANG Y, HAN S H, HU F, CHEN G X . The Asian nitrogen cycle case study. Ambio A Journal of the Human Environment, 2002,31(2):79-87.
doi: 10.1639/0044-7447(2002)031[0079:TANCCS]2.0.CO;2 pmid: 12078013 |
[50] |
ZHENG X H, LIU C Y, HAN S H . Description and application of a model for simulating regional nitrogen cycling and calculating nitrogen flux. Advances in Atmospheric Sciences, 2008,25(2):181-201.
doi: 10.1007/s00376-008-0181-7 |
[51] |
CHENGK, OGLE S M, PARTON W J, PAN G X . Predicting methanogenesis from rice paddies using the DAYCENT ecosystem model. Ecological Modelling, 2013,261:19-31.
doi: 10.1016/j.ecolmodel.2013.04.003 |
[52] | BUDAI A, ZIMMERMAN A R, COWIE A L, WEBBER J B W, SINGH B P, GLASER B, MASIELLO C A, ANDERSSON D, SHIELDS F, LEHMANN J, ARBESTAIN M C, WILLIAMS M, SOHI S, JOSEPH S . ( 2013) ‘Biochar Carbon Stability Test Method: An assessment of methods to determine biochar carbon stability’, IBI Document, Carbon Methodology. International Biochar Initiative. , accessed 15 February 2014. |
[53] | 章明奎, 顾国平, 王阳 . 生物质炭在土壤中的降解特征. 浙江大学学报(农业与生命科学版)., 2012,38(3):329-335. |
ZHANG M K, GU G P, WANG Y . Degradation characteristic of different biochar material in soil environments. Journal of Zhejiang University (Agric. & Life Sci.), 2012,38(3):329-335. (in Chinese) | |
[54] | LEHMANN J, JOSEPH S . Biochar for environment management science and technology. Science and Technology. Earthscan, 2009,25(1):15801-15811. |
[55] |
HERATH H M S K, CAMPS‐ARBESTAIN M, HEDLEY M J, KIRSCHBAUM M U F, WANG T, HALE R V . Experimental evidence for sequestering C with biochar by avoidance of CO2 emissions from original feedstock and protection of native soil organic matter. Global Change Biology Bioenergy, 2015,7(3):512-526.
doi: 10.1111/gcbb.2015.7.issue-3 |
[56] |
BRUUN E W, AMBUS P, EGSGAARD H, NIELSEN H H . Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology & Biochemistry, 2012,46(1):73-79.
doi: 10.1016/j.soilbio.2011.11.019 |
[57] |
JI X H, WU J M, PENG H, SHI L H, ZHANG Z H, LIU Z B, TIAN F X, HUO L J, ZHU J . The effect of rice straw incorporation into paddy soil on carbon sequestration and emissions in the double cropping rice system. Journal of the Science of Food & Agriculture, 2012,92(5):1038-1045.
doi: 10.1002/jsfa.5550 pmid: 22227948 |
[58] |
KHAN S, CHAO C, WAQAS M, ARO H P H, ZHU Y G . Sewage sludge biochar influence upon rice (Oryza sativa L.) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environmental Science & Technology., 2013,47(15):8624-8632.
doi: 10.1021/es400554x pmid: 23796060 |
[59] |
XU H J, WANG X H, LI H, YAO H Y, SU J Q, ZHU Y G . Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environmental Science & Technology, 2014,48(16):9391-9399.
doi: 10.1021/es5021058 pmid: 25054835 |
[60] |
HARTER J, KRAUSE H M, SCHUETTLER S, RUSER R, FROMME M, SCHOLTEN T, KAPPLER A, BEHRENS S . Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. The ISME Journal, 2014,8(3):660-674.
doi: 10.1038/ismej.2013.160 pmid: 3930306 |
[61] |
LIU X Y, YE Y X, LIU M L, ZAHNG A F, ZHANG X H, LI L Q, PAN G X . Sustainable biochar effects for low carbon crop production: A 5-crop season field experiment on a low fertility soil from Central China. Agricultural Systems, 2014,129:22-29.
doi: 10.1016/j.agsy.2014.05.008 |
[62] | CAYUELA M L, ZWIETEN L V, SINGH B P, JEFFERY S, ROIG A , SANCHEZ-MONEDERO M A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture Ecosystems & Environment, 2014,191:5-16. |
[63] | 潘根兴, 卞荣军, 程琨 . 从废弃物处理到生物质制造业:基于热裂解的生物质科技与工程. 科技导报., 2017,35(23):82-93. |
PAN G X, BIAN R J, CHENG K . From biowaste treatment to novel bio-material manufacturing: Biomaterial science and technology based on biomass pyrolysis. Science & Technology Review, 2017,35(23):82-93. (in Chinese) | |
[64] | 原鲁明, 赵立欣, 沈玉君, 尚书旗, 孟海波 . 我国生物炭基肥生产工艺与设备研究进展. 中国农业科技导报, 2015,17(4):107-113. |
YUAN L M, ZHAO L X, SHEN Y J, SHANG S Q, MENG H B . Progress on biochar-based fertilizer production technology and equipment in China. Journal of Agricultural Science and Technology, 2015,17(4):107-113. (in Chinese) | |
[65] |
HE Y H, ZHOU X H, JIANG L L, LI M, DU Z G, ZHOU G Y, SHAO J J, WANG X H, XU Z H, BAI S H, WALLACE H, XU C Y . Effects of biochar application on soil greenhouse gas fluxes: A meta-analysis. GCB Bioenergy., 2017,9:743-755. DOI: 10.1111/gcbb.1237.
doi: 10.1111/gcbb.12376 |
[66] | SONG X Z, PAN G X, ZHANG C, ZAHNG L, WANG H L . Effects of biochar application on fluxes of three biogenic greenhouse gases: A meta‐analysis. Ecosystem Health & Sustainability, 2016,2(2):1-13. DOI: 10.1002/ehs2.1202. |
[67] |
JEFFERY S, VERHEIJEN F G A, KAMMANN C, ABALOS D . Biochar effects on methane emissions from soils: A meta-analysis. Soil Biology & Biochemistry, 2016,101:251-258.
doi: 10.1016/j.soilbio.2016.07.021 |
[68] |
GOGLIO P, SMITH W N, GRANT B B, DESJARDINS R L, CAO X, TENUTA M, CAMPBELL C A, MCCONKEY B G, NEMECEK T, BURGESS P J, WILLIAMS A G . A comparison of methods to quantify greenhouse gas emissions of cropping systems in LCA. Journal of Cleaner Production, 2018,172:4010-4017.
doi: 10.1016/j.jclepro.2017.03.133 |
[1] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[2] | 郭世博,张方亮,张镇涛,周丽涛,赵锦,杨晓光. 全球气候变暖对中国种植制度的可能影响XIV.东北大豆高产稳产区及农业气象灾害分析[J]. 中国农业科学, 2022, 55(9): 1763-1780. |
[3] | 任义方,杨章平,零丰华,肖良文. 江苏奶牛热应激风险区划及其受气候变化的影响[J]. 中国农业科学, 2022, 55(22): 4513-4525. |
[4] | 唐建昭,王靖,肖登攀,潘学标. 马铃薯生长模型的研究进展及发展前景[J]. 中国农业科学, 2021, 54(5): 921-932. |
[5] | 张卫建,严圣吉,张俊,江瑜,邓艾兴. 国家粮食安全与农业双碳目标的双赢策略[J]. 中国农业科学, 2021, 54(18): 3892-3902. |
[6] | 房蕊,于镇华,李彦生,谢志煌,刘俊杰,王光华,刘晓冰,陈渊,刘居东,张少庆,吴俊江,Stephen J HERBERT,金剑. 大气CO2浓度和温度升高对农田土壤碳库及微生物群落结构的影响[J]. 中国农业科学, 2021, 54(17): 3666-3679. |
[7] | 王飞,孙增光,尹飞,郭彬彬,刘领,焦念元. 增温增CO2对间作玉米光合特性的影响[J]. 中国农业科学, 2021, 54(1): 58-70. |
[8] | 弓开元,何亮,邬定荣,吕昌河,李俊,周文彬,杜军,于强. 青藏高原高寒区青稞光温生产潜力和产量差时空分布特征及其对气候变化的响应[J]. 中国农业科学, 2020, 53(4): 720-733. |
[9] | 王鸣雷,史文娇. 中国北方新增耕地的时空变化及驱动因素分区[J]. 中国农业科学, 2020, 53(12): 2435-2449. |
[10] | 张镇涛,杨晓光,高继卿,王晓煜,白帆,孙爽,刘志娟,明博,谢瑞芝,王克如,李少昆. 气候变化背景下华北平原夏玉米适宜播期分析[J]. 中国农业科学, 2018, 51(17): 3258-3274. |
[11] | 景立权,户少武,穆海蓉,王云霞,杨连新. 大气环境变化导致水稻品质总体变劣[J]. 中国农业科学, 2018, 51(13): 2462-2475. |
[12] | 高梦雨,江彤,韩晓日,杨劲峰. 施用炭基肥及生物炭对棕壤有机碳组分的影响[J]. 中国农业科学, 2018, 51(11): 2126-2135. |
[13] | 陈坤, 徐晓楠, 彭靖, 冯小杰, 李亚朋, 战秀梅, 韩晓日. 生物炭及炭基肥对土壤微生物群落结构的影响[J]. 中国农业科学, 2018, 51(10): 1920-1930. |
[14] | 刘维,李祎君,吕厚荃. 早稻抽穗开花至成熟期气候适宜度对气候变暖与提前移栽的响应[J]. 中国农业科学, 2018, 51(1): 49-59. |
[15] | 张婷,师志刚,王根平,高翔,夏雪岩,杨伟红,张喜瑞,田晓建,程汝宏,刁现民. 华北夏谷区2001—2015年谷子育种变化[J]. 中国农业科学, 2017, 50(23): 4475-4485. |
|