[1] LIPIEC J, DOUSSAN C, NOSALEWICZ A, KONDRACKA K. Effect of drought and heat stresses on plant growth and yield: A review. International Agrophysics, 2013, 27(4): 463-477.
[2] 金善宝. 中国小麦品种及其系谱. 北京: 农业出版社, 1983.
JIN S B. Wheat Cultivar and Pedigree in China. Beijing: Agriculture Press, 1983. (in Chinese)
[3] 徐如强, 孙其信, 张树榛. 小麦耐热性研究现状与展望. 中国农业大学学报, 1998, 3(3): 33-40.
XU R Q, SUN Q X, ZHANG S Z. Current status and perspective on the investigation of heat tolerance in wheat. Journal of China Agricultural University, 1998, 3(3): 33-40. (in Chinese)
[4] FISCHER R A, MAURER O R. Crop temperature modification and yield potential in a dwarf spring wheat. Crop Science, 1976, 16: 855-859.
[5] WARDLAW I F, SOFIELD I, CARTWRIGHT P M. Factors limiting the rate of dry matter accumulation in the grain of wheat grown at high temperature. Functional Plant Biology, 1980, 7(4): 387-400.
[6] SOFIELD I, EVANS L T, COOK M G, WARDLAW I F. Factors influencing the rate and duration of grain filling in wheat. Australian Journal of Plant Physiology, 1977, 4(5): 785-797.
[7] BHULLAR S S, JENNER C F. Effects of temperature on the conversion of sucrose to starch in the develop ing wheat endosperm. Australian Journal of Plant Physiology, 1986, 13: 605-615.
[8] KEELING P L, BACON P J, HOLT D C. Elevated temperature reduced starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 1993, 191: 342-348.
[9] HURKMAN W J, MCCUE K F, ALTENBACH S B, KORN A, TANAKA C K, KOTHARI K M, JOHNSON E L, BECHTEL D B, WILSON J D, ANDERSON O D, DUPONT F M. Effect of temperature on expression of genes encoding enzymes for starch biosyntheses in developing wheat endosperm. Plant Science, 2003, 164(5): 1-9.
[10] 张哲, 闵红梅, 夏关均, 贾国梅. 高温胁迫对植物生理影响研究进展. 安徽农业科学, 2010, 38(16): 8338-8339.
ZHANG Z, MIN H M, XIA G J, JIA G M. Research advances on influence of high temperature stress on some physiological characteristics of plants. Journal of Anhui Agricultural Science, 2010, 38(16): 8338-8339. (in Chinese)
[11] 云建英, 杨甲定, 赵哈林. 干旱和高温对植物光合作用的影响机制研究进展. 西北植物学报, 2006, 26(3): 0641-0648.
YUN J Y, YANG J D, ZHAO H L. Research progress in the mechanism for drought and high temperature to affect plant photosynthesis. Acta Botanica Boreali-Occidentlia Sinica, 2006, 26(3): 0641-0648. (in Chinese)
[12] 陈锋, 田纪春, 孟庆伟, 赵世杰. 短期高温胁迫对高产小麦品系灌浆后期旗叶光系统Ⅱ功能的影响. 应用生态学报, 2006, 17(10): 1854-1858.
CHEN F, TIAN J C, MENG Q W, ZHAO S J. Effects of short-term high temperature stress on flag leaf photosystem Ⅱ functions of high-yielding wheat at late grain-filling stage. Chinese Journal of Applied Ecology, 2006, 17(10): 1854-1858. (in Chinese)
[13] YOSHIOKA M, UCHIDA S, MORI H, KOMAYAMA K, OHIRA S, MORITA N, NAKANISHI T, YAMAMOTO Y. Quality control of photosystem II-Cleavage of reaction center D1 protein in spinach thylakoids by FtsH protease under moderate heat stress.The Journal of Biological Chemistry, 2006, 281(31): 21660-21669.
[14] TEWARI K A, TRIPATHY C B. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiology, 1998, 117(3): 851-858.
[15] AL-KHATIB K, PAULSEN G M. Photosynthesis and productivity during high- temperature stress of wheat genotypes from major world regions. Crop Science, 1990, 30(5): 1127-1132.
[16] 苏德荫, 房戈英, 郑爱宁. 高温对夏播小麦幼苗的生理障碍. 山西农业科学, 1983(5): 8-9.
SU D Y, FANG Y Y, ZHENG A N. The effects of high temperature on summer sowed wheat seedlings. Shanxi Agricultural Science, 1983(5): 8-9. (in Chinese)
[17] 齐学礼, 胡琳, 董海滨, 张磊, 王根松, 高崇, 许为钢. 强光高温同时作用下不同小麦品种的光合特性. 作物学报, 2008, 34(12): 2196-2201.
QI X L, HU L, DONG H B, ZHANG L, WANG G S, GAO C, XU W G. Characteristics of photosynthesis in different wheat cultivars under high light intensity and high temperature stresses. Acta Agronomica Sinica, 2008, 34(12): 2196-2201. (in Chinese)
[18] 郭洪雪, 宋希云, 燕增文, 裴玉贺, 王海娟, 刘兰浩. 高温胁迫对小麦幼苗几个生理生化指标的影响. 华北农学报, 2007, 22: 71-74.
GUO H X, SONG X Y, YAN Z W, PEI Y H, WANG H J, LIU L H. Effects of heat stress on several physiological and biochemical indexes of wheat. Acta Agricuturae Boreali-Sinica, 2007, 22: 71-74. (in Chinese)
[19] SUN Q X, QUIEK J. Chromosomal location of genes for heat tolerance in tetraploid wheat. Cereal Research Communications, 1991, 19(4): 431-437.
[20] 徐如强, 孙其信, 张树榛. 普通小麦品种Hope细胞膜热稳定性基因的染色体定位. 遗传, 1996(4): 1-3.
XU R Q, SUN Q X, ZHANG S Z. Chromosomal location of genes for heat tolerance as measured by membrane thermostability of common wheat cv.Hopc. Hereditas, 1996(4): 1-3. (in Chinese)
[21] 陈希勇, 赵爱菊, 李亚军, 刘玉萍. 小麦耐热性基因的染色体定位和遗传效应分析. 华北农学报, 2007, 22(S2): 1-5.
CHEN X Y, ZHAO A J, LI Y J, LIU Y P. Location of heat tolerance genes on chromosomes and analysis of gene effect of heat tolerance in wheat. Acta Agricuturae Boreali-Sinica, 2007, 22(S2): 1-5. (in Chinese)
[22] 孙其信, 高立峰, 徐如强. 异源细胞质对小麦耐热性的遗传影响. 北京农业大学学报, 1994, 20(4): 361-367.
SUN Q X, GAO L F, XU R Q. The genetic effects of alien cytoplasm on wheat heat tolerance. Acta Agriculturae Universitatis Pekinensis,1994, 20(4): 361-367. (in Chinese)
[23] PINTO R S, REYNOLDS M P, MATTHEWS K L, MCLNTYRE C L, OLIVARES J J, CHAPMAN S C. Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theoretical Applied Genetics, 2010, 121(6): 1001-1021.
[24] BENNETT D, REYNOLDS M, MULLAN D, IZANLOO A, KUCHEL H, LANGRIDGE P, SCHURBUSCH T. Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theoretical and Applied Genetics, 2012, 125(7): 1473-1485.
[25] PALIWAL R, RODER M S, KUMAR U, SRIVASTAVA J P, JOSHI A K. QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theoretical and Applied Genetics, 2012, 125(3): 561-575.
[26] VIJAYALAKSHMI K, FRUTZ A K, PAULSEN G M, BAI G H, PANDRAVADA S, GILL B S. Modeling and mapping QTL for senescence- related traits in winter wheat under high temperature. Molecular Breeding, 2010, 26: 163-175.
[27] YANG J, SEARS R G, GILL B S, PAULSEN G M. Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica, 2002, 26(2): 275-282.
[28] TALUKADER S K, BABAR M A, VIJAYALAKSHMI K, POLAND J, PRASAD P V, BOWDEN R, FRITZ A. Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genetics, 2014, 15: 97.
[29] MASON R E, MONDAL S, BEECHER F W, HAYS D B. Genetic loci linking improved heat tolerance in wheat (Triticum aestivum L.) to lower leaf and spike temperatures under controlled conditions. Euphytica, 2011, 180(2): 181-194.
[30] MASON R E, MONDAL S, BEECHER F W, PACHECO A, JAMPALA B, Ibrahim A M, Hays D B. QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica, 2010, 174(3): 423-436.
[31] 李世平, 昌小平, 王成社, 景蕊莲. 小麦幼苗耐热性的QTL定位分析. 西北植物学报, 2012, 32(8): 1525- 1533.
LI S P, CHANG X P, WANG C S, JING R L. Mapping QTLs for seedling traits and heat tolerance indices in common wheat. Acta Botanica Boreali-Occidentlia Sinica, 2012, 32(8): 1525-1533. (in Chinese)
[32] 李世平, 昌小平, 王成社, 景蕊莲. 小麦灌浆期耐热性QTL定位分析. 中国农业科学, 2013, 46(10): 2119- 2129.
LI S P, CHANG X P, WANG C S, JING R L. Mapping QTL for heat tolerance at grain filling stage in common wheat. Scientia Agricultura Sinca, 2013, 46(10): 2119-2129. (in Chinese)
[33] 王飞, 马金玲, 秦丹丹, 田雪军, 倪中福, 姚颖垠, 胡兆荣, 孙其 信, 彭惠茹. 小麦耐热及热敏感基因型在高温胁迫下膜透性及膜脂组分的差异. 农业生物技术学报, 2013, 21(8): 904-910.
WANG F, MA J L, QIN D D, TIAN X J, NI Z F, YAO Y Y, HU Z R, SUN Q X, PENG H R. The difference of permeability and membrane lipid composition in heat tolerant and susceptible wheat (Triticum aestivum) under high temperature stress. Journal of Agricultural Biotechnology, 2013, 21(8): 904-910. (in Chinese)
[34] 李利红, 梁书荣, 曲小菲, 赵会杰. 外源钙对高温强光胁迫下小麦叶中蛋白激酶活性和D1蛋白磷酸化的影响. 植物生理学报, 2010, 46(5): 427-430.
LI L H, LIANG S R, QU X F, ZHAO H J. Effects of Ca2+ on the activiy of protein kinases and phosphorylation of D1 protein in wheat (Triticum asetivum L.) leaves under heat and high irradiance stress. Plant Physiology Journal, 2010, 46(5): 427-430. (in Chinese)
[35] HUBBARD K E, NISHIMURA N, HITOMI K, GETZOFF E D, SSHROEDER J I. Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Development, 2010, 24(16): 1695-1708.
[36] CAMPBELL J L, KLUEVA N Y, ZHENG H G, NIETO-SOTELO J, HO T D, NGUYEN H T. Cloning of new members of heat shock protein HSP101 gene family in wheat (Triticum aestivum (L.) Moench) inducible by heat, dehydration, and ABA. Biochimica Biophysica Acta, 2001, 1517(2): 270-277.
[37] 杨东清, 王振林, 倪英丽, 尹燕枰, 蔡铁, 杨卫兵, 彭佃亮, 崔正 勇, 江文文. 高温和外源ABA对不同持绿型小麦品种籽粒发育及内源激素含量的影响. 中国农业科学, 2014, 47(11): 2109-2125.
YANG D Q, WANG Z L, NI Y L, YIN Y P, CAI T, YANG W B, PENG D L, CUI Z Y, JIANG W W. Effect of high temperature stress and spraying exogenous ABA post-anthesis on grain filling and grain yield in different types of stay-green wheat. Scientia Agricultura Sinca, 2014, 47(11): 2109-2125. (in Chinese)
[38] SEARS R G, COX T S, PAULSEN G M. Registration of KS89WGRC9 stress-tolerant hard red winter wheat germplasm. Crop Science, 1992, 32: 507.
[39] WAHID A, GELANI S, ASHRAF M, FOOLAD M. Heat tolerance in plants: an overview. Environmental and Experimental Botany, 2007, 61(3):199-223.
[40] WANG L J, LI S H. Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Science, 2006, 170(4): 685-694.
[41] SHI Q, BAO Z Y, ZHU Z J, YING Q S, QIAN Q Q. Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L.. Plant Growth Regulation, 2006, 48(2): 127-135.
[42] 王林华, 梁书荣, 吕淑敏, 赵会杰, 曲小菲, 赵雪娟. 外源水杨酸与植物非生物胁迫抗性的关系及其作用机制. 河南农业科学, 2010, 39(8): 160-164.
WANG L H, LIANG S R, LÜ S M, ZHAO H J, QU X F, ZHAO X J. The study of relationship and molecular mechanism exogenous ABA and abiotic stress. Journal of Henan Agricultural Science, 2010, 39(8): 160-164. (in Chinese)
[43] QIN D D, WU H Y, PENG H R, YAO Y Y, NI Z F, LI Z X, ZHOU C L, SUN Q X. Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics, 2008, 9: 432.
[44] SZUCS A, JAGER K, JURCA M E, FABIAN A, BOTTKA S, ZVARA A, BARNABAS B, FEHER A. Histological and microarray analysis of the direct effect of water shortage alone or combined with heat on early grain development in wheat (Triticum aestivum). Physiology Plant, 2010, 140(2): 174-188.
[45] LIU Z S, XIN M M, QIN J X, PENG H R, NI Z F, YAO Y Y, SUN Q X. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biology, 2015, 15: 152.
[46] SKYLAS D J, CORDWEH S J, HAINS P G, BASSEAL D J, WALSH B J, BLUMENTHAL C, RATHMELL W, COPELAND L, WRIGLEY C W. Heat shock of wheat during grain filling: Proteins associated with heat tolerance. Journal of Cereal Science, 2002, 35(2): 175-188.
[47] MAJOUL T, BANCEL E, TRIBO E, HAMIDA J B, BRANLARD G. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from total endosperm. Proteomics, 2003, 3(2): 175-183.
[48] MAJOUL T, BANCEL E, TRIBO E, HAMIDA J B, BRANLARD G. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from non- prolamins fraction. Proteomics, 2004, 4(2): 505-513.
[49] KAMAL A H, KIM K H, SHIN K H, CHOI J S, BAIK B K, TSUJIMOTO H, HEO H Y, PARK C S, WOO S H. Abiotic stress responsive proteins of wheat grain determined using proteomics technique. Australian Journal of Crop Science, 2010, 4(3): 196-208.
[50] LAINO P, SHELTON D, FINNIE C, LEONARDIS A M, MASTRANGELO A M, SVENSSON B, LAFIANDRA D, MASCI S. Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress. Proteomics, 2010, 10(12): 2359-2368.
[51] WANG X, DINLERD B S, VIGNJEVICB M, JACOBSENC S, WOLLENWEBER B. Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars. Plant Science, 2015, 230: 33-50.
[52] GARDINER L J, TULLOCH M Q, OLOHAN L, PRICE H, HALL N, HALL A. A genome-wide survey of DNA methylation in hexaploid wheat. Genome Biology, 2015, 16: 273.
[53] 刘建, 小麦苗期耐热性与DNA甲基化的关系研究[D]. 北京: 中国农业大学, 2016.
LIU J. The study of DNA methylation contributing to heat tolerance in wheat seedings[D]. Beijing: China Agricultural University, 2016. (in Chinese)
[54] XIN M M, WANG Y, YAO Y Y, XIE C J, PENG H R, NI Z F, SUN Q X. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biology, 2010, 10: 123.
[55] XIN M M, WANG Y, YAO Y Y, SONG N, HU Z R, QIN D D, XIE C J, PENG H R, NI Z F, SUN Q X. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biology, 2011, 11: 61.
[56] WANG Y, SUN F L, CAO H, PENG H, NI Z, SUN Q, YAO Y. TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS ONE, 2012, 7(11): e48445.
[57] HU Z R, SONG N, ZHENG M, LIU X, LIU Z S, XING J W, MA J, GUO W W, YAO Y Y, PENG H R, XIN M M, ZHOU D X, SUN Q X. Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis. The Plant Journal, 2015, 84(6): 1178-1191. |