[1]白雪亮, 王金菊, 周维, 陶汉林, 朱晔荣, 王勇. 水稻条纹叶枯病的研究进展. 生物学通报, 2007, 42(8): 4-6.
Bai X L, Wang J J, Zhou W, Tao H L, Zhu Y H, Wang Y. Research advance in Rice stripe virus. Bulletin of Biology, 2007, 42(8): 4-6. (in Chinese)
[2]Falk B W, Tsai J H. Biology and molecular biology of viruses in the genus Tenuivirus. Annual Review of Phytopathology, 1998, 36: 139-163.
[3]王华弟, 陈剑平, 祝增荣, 孙祥良, 沈卫新. 浙江北部水稻条纹叶枯病的发病流行规律. 植物保护学报, 2007, 34(5): 487-492.
Wang H D, Chen J P, Zhu Z R, Sun X L, Shen W X. Epidemics of the Rice stripe virus in northern Zhejiang, China. Acta Phytophylacica Sinica, 2007, 34(5): 487-492. (in Chinese)
[4]Wei T Y, Yang J G, Liao F L, Gao F L, Lu L M, Zhang X T, Li F, Wu Z J, Lin Q Y, Xie L H, Lin H X. Genetic diversity and population structure of Rice stripe virus in China. Journal of General Virology, 2009, 90(4): 1025-1034.
[5]龙亚芹, 王万东, 李凡, 杨文娟, 陈海如. 云南水稻条纹病毒RNA3的分子变异及遗传多样性分析. 西南农业学报, 2011, 24(2): 570-574.
Long Y Q, Wang W D, Li F, Yang W J, Chen H R. Molecular variation and genetic diversity analysis of Rice stripe virus in RNA3 complete sequences in Yunnan. Southwest China Journal of Agricultural Sciences, 2011, 24(2): 570-574. (in Chinese)
[6]林奇田, 林含新, 吴祖建, 林奇英, 谢联辉. 水稻条纹病毒外壳蛋白和病害特异性蛋白在寄主体内的积累. 福建农业大学学报, 1998, 27(3): 257-260.
Lin Q T, Lin H X, Wu Z J, Lin Q Y, Xie L H. Accumulations of coat protein and disease specific protein of Rice stripe virus in its host. Journal of Fujian Agricultural University, 1998, 27(3): 257-260. (in Chinese)
[7]Xiong R Y, Wu J X, Zhou Y J, Zhou X P. Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Virology, 2009, 387(1): 29-40.
[8]Du Z G, Xiao D L, Wu J G, Jia D S, Yuan Z J, Liu Y, Hu L Y, Han Z, Wei T Y, Lin Q Y, Wu Z J, Xie L H. P2 of Rice stripe virus (RSV) interacts with OsSGS3 and is a silencing suppressor. Molecular Plant Pathology, 2011, 12(8): 808-814.
[9]Xiong R Y, Wu J X, Zhou Y J, Zhou X P. Identification of a movement protein of the Tenuivirus Rice stripe virus. Journal of Virology, 2008, 82(24): 12304-12311.
[10]Li S, Li X, Sun L, Zhou Y. Analysis of Rice stripe virus whole-gene expression in rice and in the small brown planthopper by real-time quantitative PCR. Acta Virologica, 2012, 56(1): 75-79.
[11]Li S, Xiong R Y, Wang X F, Zhou Y J. Five Proteins of Laodelphax striatellus are potentially involved in the interactions between Rice stripe virus and vector. Plos One, 2011, 6(10): e26585.
[12]Whitfield A E, Ullman D E, German T L. Expression and characterization of a soluble form of Tomato spotted wilt virus glycoprotein GN. Journal of Virology, 2004, 78(23): 13197-13206.
[13]Whitfield A E, Ullman D E, German T L. Tomato spotted wilt virus glycoprotein GC is cleaved at acidic pH. Virus Research, 2005, 110: 183-186.
[14]Domier L L, Shaw J G, Rhoads R E. Potyviral proteins share amino acid sequence homology with picorna-, como-, and caulimoviral proteins. Virology, 1987, 158(1): 20-27.
[15]Ramirez B C, Lozano I, Constantino L M, Haenni A L, Calvert L A. Complete nucleotide sequence and coding strategy of Rice hoja blanca virus RNA4. Journal of General Virology, 1993, 74: 2463-2468.
[16]Ramírez B C, Haenni A L. Molecular biology of Tenuiviruses, a remarkable group of plant viruses. Journal of General Virology, 1994, 75(3): 467-475.
[17]Gray S M, Banerjee N. Mechanisms of arthropod transmission of plant and animal viruses. Microbiology and Molecular Biology Reviews, 1999, 63(1): 128-148.
[18]Wu A Z, Zhao Y, Qu Z C. Subcellular localization of the stripe disease-special protein encoded by Rice stripe virus (RSV) in its vector, the small brown planthopper, Laodelphax striatellus. Chinese Science Bulletin, 2001, 46(21): 1819-1822. (in Chinese)
[19]Gietz R D, Woods R A. Yeast Transformation by the LiAc/SS Carrier DNA/PEG Method. Humana Press, 2006: 107-120.
[20]Mockli N, Auerbach D. Quantitative beta-galactosidase assay suitable for high-throughput applications in the yeast two-hybrid system. Biotechniques, 2004, 36(5): 872-877.
[21]Li B, Fields S. Identification of mutations in p53 that affect its binding to SV40 large T antigen by using the yeast two-hybrid system. The FASEB Journal, 1993, 7(10): 957-963.
[22]肖冬来, 邓慧颖, 谢荔岩, 吴祖建, 谢联辉. 灰飞虱酵母双杂交cDNA文库的构建及分析. 植物保护, 2011, 37(1): 19-23.
Xiao D L, Deng H Y, Xie L Y, Wu Z J, Xie L H. Construction of a yeast two-hybrid cDNA library of Laodelphax striatellus. Plant Protection, 2011, 37(1): 19-23. (in Chinese)
[23]李硕, 孙丽娟, 李醒, 熊如意, 徐秋芳, 周益军. 灰飞虱高带毒 (RSV) 群体酵母双杂交cDNA文库的构建. 昆虫学报, 2011, 54(11): 1324-1328.
Li S, Sun L J, Li X, Xiong R Y, Xu Q F, Zhou Y J. Construction of yeast two-hybrid cDNA library of high-virusliferous (RSV-infected) populations of the small brown planthopper, Laodelphax striatellus (Hemiptera: Delphacidae ). Acta Entomologica Sinica, 2011, 54(11): 1324-1328. (in Chinese)
[24]Kikuta S, Kikawada T, Hagiwara-Komoda Y, Nakashima N, Noda H. Sugar transporter genes of the brown planthopper, Nilaparvata lugens: A facilitated glucose/fructose transporter. Insect Biochemistry and Molecular Biology, 2010, 40(11): 805-813.
[25]Manel N, Kim F J, Kinet S, Taylor N, Sitbon M, Battini J L. The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell, 2003, 115(4): 449-459.
[26]Price D R G, Wilkinson H S, Gatehouse J A. Functional expression and characterisation of a gut facilitative glucose transporter, NlHT1, from the phloem-feeding insect Nilaparvata lugens (rice brown planthopper). Insect Biochemistry and Molecular Biology, 2007, 37(11): 1138-1148.
[27]Andersen S O, Hojrup P, Roepstorff P. Insect cuticular proteins. Insect Biochemistry and Molecular Biology, 1995, 25(2): 153-176.
[28]Futahashi R, Okamoto S, Kawasaki H, Zhong Y S, Iwanaga M, Mita K, Fujiwara H. Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2008, 38(12): 1138-1146.
[29]Rebers J E, Willis J H. A conserved domain in arthropod cuticular proteins binds chitin. Insect Biochemistry and Molecular Biology, 2001, 31(11): 1083-1093.
[30]Cilia M, Tamborindeguy C, Fish T, Howe K, Thannhauser T W, Gray S. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission. Journal of Virology, 2011, 85(5): 2148-2166.
[31]Rybakin V, Clemen C S. Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking. BioEssays, 2005, 27(6): 625-632.
[32]Yáñez-Mó M, Barreiro O, Gordon-Alonso M, Sala-Valdés M, Sánchez-Madrid F. Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends in Cell Biology, 2009, 19(9): 434-446.
[33]Hemler M E. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annual Review of Cell and Developmental Biology, 2003, 19(1): 397-422.
[34]Futahashi R, Tanaka K, Tanahashi M, Nikoh N, Kikuchi Y, Lee B L, Fukatsu T. Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont. PloS One, 2013, 8(5): e64557.
[35]D’Souza J, Cheah P Y, Gros P, Chia W, Rodrigues V. Functional complementation of the malvolio mutation in the taste pathway of Drosophila melanogaster by the human natural resistance-associated macrophage protein 1 (Nramp-1). The Journal of Experimental Biology, 1999, 202(14): 1909-1915.
[36]Rassart E, Bedirian A, Do Carmo S, Guinard O, Sirois J, Terrisse L, Milne R. Apolipoprotein d. Biochimica et Biophysica Acta (BBA), 2000, 1482(1): 185-198.
[37]Halestrap A P. The monocarboxylate transporter family-structure and functional characterization. IUBMB Life, 2012, 64(1): 1-9.
[38]Drake L L, Boudko D Y, Marinotti O, Carpenter V K, Dawe A L, Hansen I A. The aquaporin gene family of the yellow fever mosquito, Aedes aegypti. PloS One, 2010, 5(12): e15578.
[39]Terhzaz S, Rosay P, Goodwin S F, Veenstra J A. The neuropeptide SIFamide modulates sexual behavior in Drosophila. Biochemical and Biophysical Research Communications, 2007, 352(2): 305-310.
[40]Jørgensen L M, Hauser F, Cazzamali G, Williamson M, Grimmelikhuijzen G J. Molecular identification of the first SIFamide receptor. Biochemical and Biophysical Research Communications, 2006, 340(2): 696-701.
[41]Ons S, Sterkel M, Diambra L, Urlaub H, Rivera-Pomar R. Neuropeptide precursor gene discovery in the Chagas disease vector Rhodnius prolixus. Insect Molecular Biology, 2011, 20(1): 29-44.
[42]Li A, Sadasivam M, Ding J L. Receptor-ligand interaction between vitellogenin receptor (VtgR) and vitellogenin (Vtg), implications on low density lipoprotein receptor and apolipoprotein B/E. The Journal of Biological Chemistry, 2003, 278(5): 2799-2806.
[43]Liu Q N, Zhu B J, Liu C L, Wei G Q, Wang Z G. Characterization of vitellogenin receptor (VgR) from the Chinese oak silkworm, Antheraea pernyi. Bulletin of Insectology, 2011, 64(2): 167-174.
[44]Acimovic Y, Coe I R. Molecular evolution of the equilibrative nucleoside transporter family: identification of novel family members in prokaryotes and eukaryotes. Molecular Biology and Evolution, 2002, 19(12): 2199-2210.
[45]Baldwin S A, Beal P R, Yao S Y M, King A E, Cass C E, Young J D. The equilibrative nucleoside transporter family, SLC29. Pfluegers Archive, 2004, 447(5): 735-743.
[46]Griffiths M, Yao S, Abidi F, Phillips S E, Cass C E, Young J D, Baldwin S A. Molecular cloning and characterization of a nitrobenzylthioinosine-insensitive (ei) equilibrative nucleoside transporter from human placenta. Biochemistry Journal, 1997, 328: 739-743.
[47]Sun-Wada G H, Murakami H, Nakai H, Wada Y, Futai M. Mouse Atp6f, the gene encoding the 23-kDa proteolipid of vacuolar proton translocating ATPase. Gene, 2001, 274(1): 93-99.
[48]Wee Y S, Roundy K M, Weis J J. Interferon-inducible transmembrane proteins of the innate immune response act as membrane organizers by influencing clathrin and v-ATPase localization and function. Innate Immunity, 2012, 18(6): 834-845. |