中国农业科学 ›› 2021, Vol. 54 ›› Issue (14): 3134-3148.doi: 10.3864/j.issn.0578-1752.2021.14.018
• 研究简报 • 上一篇
张伟1,2(),王世银1(
),高莉1,杨力伟1,邓双义1,刘晓娜1,石国庆2,甘尚权2(
)
收稿日期:
2020-06-03
接受日期:
2020-10-30
出版日期:
2021-07-16
发布日期:
2021-07-26
通讯作者:
王世银,甘尚权
作者简介:
张伟,E-mail: 基金资助:
ZHANG Wei1,2(),WANG ShiYin1(
),GAO Li1,YANG LiWei1,DENG ShuangYi1,LIU XiaoNa1,SHI GuoQing2,GAN ShangQuan2(
)
Received:
2020-06-03
Accepted:
2020-10-30
Online:
2021-07-16
Published:
2021-07-26
Contact:
ShiYin WANG,ShangQuan GAN
摘要:
【目的】为了深入挖掘巴什拜羊不同发育阶段骨骼肌中miR-486的靶基因,为最终阐明巴什拜羊优良肉质性状形成的分子调控机制奠定基础,同时为巴什拜羊的持续选育提供理论依据。【方法】分别采集了巴什拜羊胎儿期40,50,60,80,100和120 d,以及出生当天,出生后30,60和90 d共计10个不同发育阶段的骨骼肌组织,分别利用胎儿期6个阶段的混合mRNA和出生后4个阶段的混合mRNA构建了胎儿期和出生后骨骼肌中miR-486调控靶基因的cDNA文库,并利用高通量测序技术对cDNA文库中的靶基因信息进行了深入挖掘。在对所得候选靶基因功能分析的基础上,选择10个候选靶基因,使用qRT-PCR检测其在巴什拜羊上述10个不同发育阶段骨骼肌中表达量的变化,结合课题组前期获得的miR-486在巴什拜羊不同发育阶段骨骼肌中的表达规律,对其靶向调控关系及生物学功能进行初步验证和分析。进而选择其中的4个候选靶基因使用荧光素酶报告载体试验和巴什拜羊骨骼肌卫星细胞中的靶向调控试验最终确认其靶向调控关系。【结果】通过对两个cDNA文库高通量测序数据的分析,胎儿期和出生后分别获得了123个和118个miR-486的靶基因,因其靶向调控关系未经实验验证,故暂称为候选靶基因。其中有96个为两个阶段共表达的候选靶基因,其余27个和22个分别为胎儿期和出生后骨骼肌中特异表达的候选靶基因。GO和KEGG分析结果表明所得候选靶基因显著富集于与肌肉分化和肌纤维发育相关的代谢和信号转导通路,诸如PI3k-Akt、MAPK、Wnt、Adherens junction和Regulation of actin cytoskeleton等。qRT-PCR检测结果表明所选10个候选靶基因在不同发育阶段巴什拜羊骨骼肌中均有表达,但其表达变化规律有所不同。PTEN、Foxo1、Dock3、PAX7、IGF1R、PIK3I1和FBN1在胎儿期巴什拜羊骨骼肌中呈高表达,出生后其表达量显著下调,而OLFM4的表达量则呈相反的变化趋势,ARHGAP5和PDCD4在胎儿期和出生后巴什拜羊骨骼肌中的表达量未见显著变化。对其中4个候选靶基因的进一步试验验证,双荧光素酶报告载体试验结果表明,miR-486可以高效结合在其候选靶基因PTEN、Foxo1、IGF1R和PIK3R1的靶位点上,进而极显著抑制其后萤火虫荧光素酶的活性;巴什拜羊骨骼肌卫星细胞中的靶向调控试验结果亦表明miR-486可以显著下调上述4个候选靶基因的mRNA水平,抑制其生物学功能。所以可以确证在巴什拜羊骨骼肌中miR-486可以靶向调控PTEN、Foxo1、IGF1R和PIK3R1的表达。【结论】对巴什拜羊不同发育阶段骨骼肌中miR-486的靶基因进行了深入挖掘,全面解析了miR-486及其靶基因在巴什拜羊骨骼肌发育过程中参与的生物学过程和信号通路,所得候选靶基因数据可靠性高,可为阐明巴什拜羊优良肉质性状的分子调控机制奠定基础。
张伟,王世银,高莉,杨力伟,邓双义,刘晓娜,石国庆,甘尚权. 巴什拜羊不同发育阶段骨骼肌中miR-486靶基因的研究[J]. 中国农业科学, 2021, 54(14): 3134-3148.
ZHANG Wei,WANG ShiYin,GAO Li,YANG LiWei,DENG ShuangYi,LIU XiaoNa,SHI GuoQing,GAN ShangQuan. Investigation of miR-486 Target Genes in Skeletal Muscle of Bashbay Sheep in Different Development Periods[J]. Scientia Agricultura Sinica, 2021, 54(14): 3134-3148.
表1
10个候选靶基因qRT-PCR引物信息表"
基因 Gene | 登录号* Transcript ID | 引物名称 Primers name | 引物序列(5′-3′) Sequence of primers | 片段大小 Size (bp) |
---|---|---|---|---|
PTEN | ENSOART00000015407.1 | PTENqF | GTATTTGCAGTATAGAGCGTGC | 165 |
PTENqR | GGATTTGATGACTCCTCTACTG | |||
Foxo1 | ENSBTAT00000061127.3 | Foxo1qF | CCACAGCAATGACGACTTCGAC | 275 |
Foxo1qR | GACTGGGTGGACACAGTCAATG | |||
Dock3 | ENSOART00000008795.1 | Dock3qF | AATCAGCCAAGCCTTCAGCTAG | 246 |
Dock3qR | TCTGCTCCCAGTCCATCATGTC | |||
PAX7 | ENSOART00000011524.1 | PAX7qF | GTTCGATTAGCCGAGTGCTCAG | 274 |
PAX7qR | GTAGATGTCTGGGTAGTGGGTC | |||
ARHGAP5 | ENSOART00000006997.1 | ARHG5qF | GTCTATCAGAACCATGTACAGC | 189 |
ARHG5qR | CATACACCTCTTTGCTATCAGC | |||
OLFM4 | ENSOART00000007293.1 | OLFM4qF | GACCATCTCCAAGAAGTTCGAG | 159 |
OLFM4qR | CTTGATCAGCTCAAAGTCCAGC | |||
IGF1R | ENSOART00000010895.1 | IGF1RqF | GGAAGAGCTCGAGACTGAGTAC | 159 |
IGF1RqR | GACAAAGTTAGAGGCGCTGCAG | |||
PIK3R1 | ENSOART00000006390.1 | PIK3R1qF | CATGGGGATTACACTCTTACAC | 147 |
PIK3R1qR | CTAGAGATTCATTCCGGTAGTG | |||
FBN1 | ENSOART00000022901.1 | FBN1qF | GGATTTCACGTCACACGAGATG | 208 |
FBN1qR | ACACAACGCCCATTCATGCAGA | |||
PDCD4 | ENSOART00000011353.1 | PDCD4qF | ATTGCTAGAGCTGTTGGAGATG | 250 |
PDCD4qR | TCAGCTTCAGAAATGTCTCCAG | |||
β-actin | ENSOART00000003275.1 | β-actin qF | TGTGCGTGACATCAAGGAGAAG | 177 |
β-actinqR | AGGAAGGAAGGCTGGAAGAG |
表2
荧光素酶报告载体构建引物"
引物 Primer | 引物序列(5′-3′) Sequence of primers | 片段大小Size (bp) | 试验用途 Experiment |
---|---|---|---|
PTENcF | ccctcgagggCACCTTTCTTTAGCATGCTAC | 262 | 载体构建 Vector construction |
PTENcR | ccaagcttggGATAGCCTCCACATTTGTATG | ||
PTENmutF | GAATCTGTATTGGGGTACcttcATGAACCTTCCACAACAT | 262 | 靶位点突变 Mutate bind site |
PTENmutR | ATGTTGTGGAAGGTTCATgaagGTACCCCAATACAGATTC | ||
Foxo1cF | ccctcgagggGAGAAGCAGTCCAAAGATGTC | 221 | 载体构建 Vector construction |
Foxo1cR | ccaagcttggATGGTGTAGTGAGTTTGGCAC | ||
Foxo1mutF | CGAAGACGCTTCCTGTACcttcTGTTTGCCCAGTGTTTGC | 221 | 靶位点突变 Mutate bind site |
Foxo1mutR | GCAAACACTGGGCAAACAgaagGTACAGGAAGCGTCTTCG | ||
IGF1RcF | ccctcgagggGAGAATCCCAATGGATTGATC | 237 | 载体构建 Vector construction |
IGF1RcR | ccaagcttggGGATGAAGTTCTCATATGTCG | ||
IGF1RmutF | GTGTCCAGACAGGAGTACcttcAGTATGGAGGAGCCAAGC | 237 | 靶位点突变 Mutate bind site |
IGF1RmutR | GCTTGGCTCCTCCATACTgaagGTACTCCTGTCTGGACAC | ||
PIK3R1cF | ccctcgagggCTGAAGGCTAAATTCACAGTG | 267 | 载体构建 Vector construction |
PIK3R1cR | ccaagcttggTAACAGCCAAGTACTCTGTAC | ||
PIK3R1mutF | GCTTTTAAAGAAATGTACcttcTGCCAGTTTGTCAAGTCG | 267 | 靶位点突变 Mutate bind site |
PIK3R1mutR | CGACTTGACAAACTGGCAgaagGTACATTTCTTTAAAAGC |
[1] | 努尔拉提汗·木哈买提别克, 赛力克·木勒达汗, 努尔古丽·热孜别克, 决肯·阿尼瓦什. 新疆巴什拜羊青色和白色毛绒品质比较分析. 新疆畜牧业, 2015, 11:25-27. |
MUHAMAITIBIEKE N, MULEDAHAN S, REZIBIEKE N, ANIWASHI J. Analysis of white and cyan wool quality of Bashbay sheep. Xinjiang Animal Husbandry, 2015, 11:25-27. (in Chinese) | |
[2] | 决肯·阿尼瓦什, 克木尼斯汗, 海拉提, 季文凭, 杜曼. 巴什拜羊瘦肉型新品系的培育及其生产性能分析. 新疆农业科学, 2010, 47(2):406-409. |
ANIWASHI J, KEMUNISIHAN, HAILATI, JI W P, DU M. Analysis of breeding and production performance of new strain lean meat type Bashbay sheep. Xinjiang Agricultural Sciences, 2010, 47(2):406-409. (in Chinese) | |
[3] | 韩业东, 决肯·阿尼瓦什, 帕娜尔·依都拉, 李齐发, 谢庄. 巴什拜羊群体遗传多样性与遗传分化的研究. 南京农业大学学报, 2011, 34(1):123-127. |
HAN Y D, ANIWASHI J, YIDULA P, LI Q F, XIE Z. Study on genetic diversity and genetic differentiation among Bashbay sheep populations. Journal of Nanjing Agricultural University, 2011, 34(1):123-127. (in Chinese) | |
[4] | 刘真, 王慧华, 刘瑞凿, 吴明明, 张淑珍, 张莉, 赵福平, 杜立新, 魏彩虹. 不同尾型绵羊全基因组选择信号检测. 畜牧兽医学报, 2015, 46(10):1721-1732. |
LIU Z, WANG H H, LIU R Z, WU M M, ZHANG S Z, ZHANG L, ZHAO F P, DU L X, WEI C H. Genome-wide detection of selection signatures of distinct tail types in sheep populations. Chinese Journal of Animal and Veterinary Science, 2015, 46(10):1721-1732. (in Chinese) | |
[5] |
MIRETTI S, MARTIGNANI E, ACCORNERO P, BARATTA M. Functional effect of miR-27b on myostatin expression: a relationship in piedmontese cattle with double-muscled phenotype. BMC Genomics, 2013, 14(1):1-8.
doi: 10.1186/1471-2164-14-1 |
[6] |
CLOP A, MARCQ F, TAKEDA H, PIROTTIN D, TORDOIR X, BIBÉ B, BOUIX J, CAIMENT F, ELSEN J M, EYCHENNE F, LARZUL C, LAVILLE E MEISH F, MILENKOVIC D, TOBIN J, CHARLIER C, GEORGES M. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics, 2006, 38(7):813-818.
doi: 10.1038/ng1810 |
[7] |
ALEXANDER M S, CASAR J C, MOTOHASHI N, MYERS J A, EISENBERG I, GONZALEZ R T, ESTRELLA E A, KANG P B, KAWAHARA G, KUNKEL L M. Regulation of DMD pathology by an ankyrin-encoded miRNA. Skeletal Muscle, 2011, 1(1):27. DOI: 10.1186/2044-5040-1-27.
doi: 10.1186/2044-5040-1-27 |
[8] | HITACHI K, NAKATANI M, TSUCHIDA K. Myostatin signaling regulates Akt activity via the regulation of miR-486 expression. The International Journal of Biochemistry&Cell Biology, 2014, 47:93-103. |
[9] | 张伟, 王世银, 邓双义, 杨力伟, 石国庆, 甘尚权. 巴什拜羊骨骼肌不同发育阶段差异表达miRNA研究. 农业生物技术学报, 2018, 26(1):104-112. |
ZHANG W, WANG S Y, DENG S Y, YANG L W, SHI G Q, GAN S Q. Research of differentially expressed miRNA of skeletal muscle during different development stages in Bashbay sheep (Ovis aries) . Journal of Agircultural Biotechnology, 2018, 26(1):104-112. (in Chinese) | |
[10] | 张伟, 王世银, 石国庆, 邓双义, 刘晓娜, 杨力伟. 巴什拜羊miR-486多态性及其表达规律研究. 农业生物技术学报, 2020, 28(1):92-100. |
ZHANG W, WANG S Y, SHI G Q, DENG S Y, LIU X N, YANG L W. Polymorphism of miR-486 and its expression pattern in Bashbay sheep (Ovis aries) . Journal of Agircultural Biotechnology, 2020, 28(1):92-100. (in Chinese) | |
[11] | 甘尚权, 高蕊, 王立民, 沈敏, 王新华, 刘守仁. 获取miRNA候选靶基因的方法及其专用反转录引物[P]. 中国, 发明专利, CN103194441A, 2013- 07- 10. |
GAN S Q, GAO R, WANG L M, SHEN M, WANG X H, LIU S R. The method and special primers of obtaining target genes of miRNA[P]. China, Patent for Invention, CN103194441A, 2013- 07- 10. (in Chinese) | |
[12] |
CAMON E, MAGRANE M, BARRELL D, LEE V, DIMMER E, MASLEN J, BINNS D, HARTE N, LOPEZ R, APWEILER R. The gene ontology annotation (GOA) database: sharing knowledge in uniprot with gene ontology. Nucleic Acids Research, 2004, 32(Database issue):D262.
doi: 10.1093/nar/gkh021 |
[13] |
HATTORI M, ITOH M, ARAKI M, HIRAKAWA M, KAWASHIMA S, OKUDA S, GOTO S, KATAYAMA T, TOKIMATSU T, YAMANISHI Y, KANEHISA M. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 2007, 36(Suppl.1):D480-D484.
doi: 10.1093/nar/gkm882 |
[14] |
PICARD B, LEFAUCHEUR L, BERRI C, DUCLOS M J. Muscle fiber ontogenesis in farm animal species. Reproduction Nutrition Development, 2002, 42(5):415-431.
doi: 10.1051/rnd:2002035 |
[15] | STICKLAND N C, DEMIRTAS B, CLELLAND A K, ASHTON C. Genetic and nutritional influence on muscle growth in farm animals. Comparative Biochemistry and Physiology Part A: Molecular&Integrative Physiology, 2000, 126, 141. DOI: 10.1016/S1095-6433(00)80279-2. |
[16] |
ABMAYR S M, PAVLATH G K. Myoblast fusion: Lessons from flies and mice. Development, 2012, 139(4):641-656.
doi: 10.1242/dev.068353 |
[17] | WILSON S J, MCEWAN J C, SHEARD P W, HARRIS A J. Early stages of myogenesis in a large mammal: formation of successive generations of myotubes in sheep tibialis muscle. Journal of Muscle Research & Cell Motility, 1992, 13(9):534-550. |
[18] |
DRAEGER A, WEEDS A G, FITZSIMONS R B. Primary, secondary and tertiary myotubes in the developing skeletal muscle: a new approach to analysis of human myogenesis. Journal of the Neurological Sciences, 1987, 81(1):19-43.
doi: 10.1016/0022-510X(87)90181-X |
[19] |
LEFAUCHEUR L, EDOM F, ECOLAN P, BUTLER-BROWNE G S. Pattern of muscle fiber type formation in the pig. Development Dynamics, 1995, 203(1):27-41.
doi: 10.1002/aja.1002030104 |
[20] |
MASCARELLO J, STECHINI M L, ROWLERSON A, BALLOCHI E. Tertiary myotubes in postnatal growing pig muscle detected by their myosin isoform composition. Journal of Animal Science, 1992, 70(6):1806-1813.
doi: 10.2527/1992.7061806x |
[21] | 李雪娇, 刘晨曦, 杨开伦, 刘明军. 德美羊与中美羊胎儿期骨骼肌组织学结构发育特征差异性研究. 草食家畜, 2017(4):1-6. |
LI X J, LIU C X, YANG K L, LIU M J. Study on differentiation of fetal skeletal muscle development characteristics between German and Chinese Merino Sheep. Grass-feeding Livestock, 2017(4):1-6. (in Chinese) | |
[22] | 李雪娇, 刘晨曦, 孙亚伟, 杨开伦, 刘明军. 德国美利奴羊胎儿期骨骼肌组织学结构发育特征研究. 西北农林科技大学学报(自然科学版), 2018, 46(5):7-13. |
LI X J, LIU C X, SUN Y W, YANG K L, LIU M J. Study on structure development characteristics of German Merino sheep fetal skeletal muscle tissue. Journal of Northwest A &F University (Natural Science Edition), 2018, 46(5):7-13. (in Chinese) | |
[23] | 石田培, 王欣悦, 侯浩宾, 赵志达, 尚明玉, 张莉. 基于全转录组测序的绵羊胚胎不同发育阶段骨骼肌circRNA的分析与鉴定. 中国农业科学, 2020, 53(6):642-657. |
SHI T P, WANG X Y, HOU H B, ZHAO Z D, SHANG M Y, ZHANG L. Analysis and identification of circRNAs of skeletal muscle at different stages of sheep embryos based on whole transcriptome sequencing. Scientia Agricultura Sinica, 2020, 53(6):642-657. (in Chinese) | |
[24] |
SMALL E M, O′ROURKE J R, MORESI V, SUTHERLAND L B, MCANALLY J, GERARD R D, RICHARDSON J A, OLSON E N. Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA- 486. PNAS, 2010, 107(9):4218-4223.
doi: 10.1073/pnas.1000300107 |
[25] |
PORTER N C, RESNECK W G, O’NEILL A, VAN ROSSUM D B, STONE M R, BLOCH R J. Association of small ankyrin 1 with the sarcoplasmic reticulum. Molecular Membrane Biology, 2005, 22(5):421-432.
doi: 10.1080/09687860500244262 |
[26] |
SONG M S, SALMENA L, PANDOLFI P P. The functions and regulation of the PTEN tumour suppressor. Nature Reviews Molecular Cell Biology, 2012, 13:283-296.
doi: 10.1038/nrm3330 |
[27] |
YUE F, BI P P, WANG C, SHAN T Z, NIE Y H, RATLIFF T L, GAVIN T P, KUANG S KUANG S. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nature Communications, 2017, 8, 14328. https://doi.org/10.1038/ncomms14328.
doi: 10.1038/ncomms14328 |
[28] |
HAKUNO F, YAMAUCHI Y, KANEKO G, YONEYAMA Y, NAKAE J, CHIDA K, KADOWAKI T, YAMANOUCHI K, NISHIHARA M, TAKAHASHI S. Constitutive expression of insulin receptor substrate (IRS)-1 inhibits myogenic differentiation through nuclear exclusion of Foxo1 in L6 myoblasts. PLoS One, 2011, 6:e25655.
doi: 10.1371/journal.pone.0025655 |
[29] |
XU M, CHEN X L, CHEN D W, YU B, HUANG Z Q. FoxO1: a novel insight into its molecular mechanisms in the regulation of skeletal muscle differentiation and fiber type specification. Oncotarget, 2017, 8(6):10662-10674.
doi: 10.18632/oncotarget.v8i6 |
[30] |
ALEXANDER M S, CASAR J C, MOTOHASHI N, VIEIRA N M, EISENBERG I, MARSHALL J L, GASPERINI M J, LEK A, MYERS J A, ESTRELLA E A, KANG P B, SHAPIRO F, RAHIMOV F, KAWAHARA G, WIDRICK J J, KUNKEL L M. MicroRNA-486- dependent modulation of DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy-associated symptoms. The Journal of Clinical Investigation, 2014, 124(6):2651-2667.
doi: 10.1172/JCI73579 |
[31] |
XU J, LI R S, WORKENEH B, DONG Y L, WANG X N, HU Z Y. Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney International, 2012, 82:401-411.
doi: 10.1038/ki.2012.84 |
[32] |
WANG X H, MITCH W E. Mechanisms of muscle wasting in chronic kidney disease. Nature Reviews Nephrology, 2014, 10(9):504-516.
doi: 10.1038/nrneph.2014.112 |
[33] |
PONNUSAMY A, SINHA S, HYDE G D, BORLAND S J, TAYLOR R F, POND E, EYRE H J, INKSON C A, GILMORE A, ASHTON N, KALRA P A, CANFIELD A. FTI-277 inhibits smooth muscle cell calcification by up-regulating PI3K/Akt signaling and inhibiting apoptosis. PLoS ONE, 2018, 13(4):e0196232.
doi: 10.1371/journal.pone.0196232 |
[34] |
GLASS D. Molecular mechanisms modulating muscle mass. TRENDS in Molecular Medicine, 2003, 9(8):344-350.
doi: 10.1016/S1471-4914(03)00138-2 |
[35] |
DUTT V, GUPTA S, DABUR R, INJETI E, MITTAL A. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action. Pharmacological Research, 2015, 99:86-100.
doi: 10.1016/j.phrs.2015.05.010 |
[36] | GLASS D L. Skeletal muscle hypertrophy and atrophy signaling pathways. The International Journal of Biochemistry&Cell Biology, 2005, 37(10):1974-1984. |
[37] |
STITT T N, DRUJAN D, CLARKE B A, PANARO F, TIMOFEYVA Y, KLINE W O, GONZALEZ M, YANCOPOULOS G D, GLASS D J. The IGF-1/PI3K/Akt Pathway Prevents Expression of Muscle Atrophy-Induced Ubiquitin Ligases by Inhibiting FOXO Transcription Factors. Molecular Cell, 2004, 14(3):395-403.
doi: 10.1016/S1097-2765(04)00211-4 |
[38] |
MARGOLIA L M, BERRYMAN C E, MURPHY N E, CARRIGAN C T, YOUNG A J, CARBONE J W, PASIAKOS S M. PI3K-AKT- FOXO1 pathway targeted by skeletal muscle microRNA to suppress proteolytic gene expression in response to carbohydrate intake during aerobic exercise. Physiological Reports, 2018, 6(23):e13931.
doi: 10.14814/phy2.13931 |
[39] |
YU Y H, CHU W L, CHAI J K, LI X, LIU L Y, MA L. Critical role of miRNAs in mediating skeletal muscle atrophy. Molecular Medicine Reports, 2016, 13:1470-1474.
doi: 10.3892/mmr.2015.4748 |
[40] |
GEBERT L F R, MACRAE I J. Regulation of microRNA function in animals. Nature Reviews Molecular Cell Biology, 2019, 20(1):21-37.
doi: 10.1038/s41580-018-0045-7 |
[41] |
SEOK H, HAM J, JANG E S, CHI S W. MicroRNA target recognition: insights from transcriptome-wide non-canonical interactions. Molecules and Cells, 2016, 39(5):375-381.
doi: 10.14348/molcells.2016.0013 |
[42] |
ANDERSON C, CATOE H, WERNER R. miR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Research. 2006, 34(20):5863-5871.
doi: 10.1093/nar/gkl743 |
[43] |
GUO H, INGOLIA N T, WEISSMAN J S, BARTEL D P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 2010, 466(7308):835-841.
doi: 10.1038/nature09267 |
[44] |
DJURANOVIC S, NAHVI A, GREEN R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science, 2012, 336(6078):237-240.
doi: 10.1126/science.1215691 |
[45] |
HAUSSER J, ZAVOLAN M. Identification and consequences of miRNA-target interactions-beyond repression of gene expression. Nature Reviews Genetics, 2014, 15(9):599-612.
doi: 10.1038/nrg3765 |
[1] | 沈龙仙, 王丽婷, 何珂, 杜雪, 颜菲菲, 陈维虎, 吕耀平, 汪涵, 周晓龙, 赵阿勇. 褪黑素和烟酰胺单核苷酸对鹅骨骼肌卫星细胞增殖的影响[J]. 中国农业科学, 2023, 56(2): 391-404. |
[2] | 杨昕冉,马鑫浩,杜嘉伟,昝林森. m6A甲基化酶相关基因在牛骨骼肌生成中的表达[J]. 中国农业科学, 2023, 56(1): 165-178. |
[3] | 宣旭娴,盛子璐,解振强,黄雨晴,巩培杰,张川,郑婷,王晨,房经贵. vvi-miR172s及其靶基因响应赤霉素调控葡萄果实发育的作用分析[J]. 中国农业科学, 2021, 54(6): 1199-1217. |
[4] | 石田培,王欣悦,侯浩宾,赵志达,尚明玉,张莉. 基于全转录组测序的绵羊胚胎不同发育阶段 骨骼肌circRNA的分析与鉴定[J]. 中国农业科学, 2020, 53(3): 642-657. |
[5] | 来裕婷,朱菲菲,王轶敏,郭宏,张林林,李新,郭益文,丁向彬. PSMB5蛋白对牛骨骼肌卫星细胞增殖与成肌分化的影响[J]. 中国农业科学, 2020, 53(20): 4287-4296. |
[6] | 张文颖, 韩旭, 朱旭东, 解振强, 纠松涛, 黄雨晴, 贾海锋, 房经贵, 王晨. 葡萄miR159s靶基因的鉴定及其应答GA在果实不同组织的调控作用[J]. 中国农业科学, 2019, 52(16): 2858-2870. |
[7] | 李燕,陈明明,张俊星,张林林,李新,郭宏,丁向彬,刘新峰. 牛LncRNA-133a对骨骼肌卫星细胞增殖分化的影响[J]. 中国农业科学, 2019, 52(1): 143-153. |
[8] | 郭睿,杜宇,熊翠玲,郑燕珍,付中民,徐国钧,王海朋,陈华枝,耿四海,周丁丁,石彩云,赵红霞,陈大福. 意大利蜜蜂幼虫肠道发育过程中的差异表达 microRNA及其调控网络[J]. 中国农业科学, 2018, 51(21): 4197-4209. |
[9] | 李帅,蒋西子,梁伟芳,陈思涵,张享享,左登攀,胡亚会,江彤 . 利用酵母双杂交系统筛选与草莓镶脉病毒P6蛋白互作的森林草莓寄主因子[J]. 中国农业科学, 2017, 50(18): 3519-3528. |
[10] | 迟吉娜,蔡肖,张建宏,甄军波,刘琳琳,田海燕,唐丽媛,刘存敬,崔瑞敏,张香云. 冀228纤维均一化全长cDNA文库的构建与鉴定分析[J]. 中国农业科学, 2016, 49(5): 813-824. |
[11] | 王宇秋,李国邦,杨娟,黎良,赵志学,樊晶,王文明. 稻曲病菌侵染水稻颖花的酵母双杂交cDNA文库构建与应用[J]. 中国农业科学, 2016, 49(5): 865-873. |
[12] | 罗维玉,朱鹏阳,张 杰,胡永浩,孔晖晖,梁立滨,周 圆,李呈军,姜 丽,陈化兰. 人源肺细胞cDNA文库构建及与流感病毒NP互作宿主蛋白的筛选[J]. 中国农业科学, 2016, 49(22): 4451-4459. |
[13] | 胡艳,刘宏祥,单艳菊,姬改革,束婧婷,徐文娟,朱春红,陶志云,李慧芳. 鸭发育早期骨骼肌异步发育和IGF-I/MSTN-A mRNA表达的相关性[J]. 中国农业科学, 2016, 49(2): 361-370. |
[14] | 刘仕平,吴小燕,张丹宇,黄亚玺,王伟,赵萍,夏庆友. 家蚕microRNA 7靶基因Bmhairy的鉴定和转录表达模式[J]. 中国农业科学, 2016, 49(1): 195-204. |
[15] | 赵艺泽,刘艳,王锡锋. 利用酵母双杂交系统筛选介体异沙叶蝉中与小麦矮缩病毒外壳蛋白互作的蛋白质[J]. 中国农业科学, 2015, 48(12): 2354-2363. |
|