中国农业科学 ›› 2013, Vol. 46 ›› Issue (11): 2307-2320.doi: 10.3864/j.issn.0578-1752.2013.11.015
夏涛, 高丽萍, 刘亚军, 王云生, 刘莉, 赵磊, 蒋晓岚, 钱玉梅
收稿日期:
2012-12-05
出版日期:
2013-06-01
发布日期:
2013-04-01
通讯作者:
夏涛,E-mail:xiatao62@126.com
作者简介:
夏涛,E-mail:xiatao62@126.com
基金资助:
国家自然科学基金项目(30972401,31170282,31170647,31000314,31200229)、安徽省自然科学基金项目(11040606M73)、安徽省教育厅高校省级自然科学基金(KJ2012A110)
XIA Tao, GAO Li-Ping, LIU Ya-Jun, WANG Yun-Sheng, LIU Li, ZHAO Lei, JIANG Xiao-Lan, QIAN Yu-Mei
Received:
2012-12-05
Online:
2013-06-01
Published:
2013-04-01
摘要: 茶树酯型儿茶素对于茶叶加工产品品质的影响及人类健康的药理功效均高于非酯型儿茶素。酯型儿茶素合成及水解途径及分子调控机理,既是长期困扰茶业界的重点难题,也是富含原花青素(PAs)或缩合单宁(CAs)植物如葡萄、柿子的未解科学问题之一。作者在文中介绍了茶树酯型儿茶素合成及水解途径研究上取得的进展,儿茶素的没食子酰基化过程与水解单宁合成具有相似性;没食子酰基葡糖糖(βG)是它们合成的酰基供体,与葡萄糖基转移酶(UGGT)和没食子酰基转移酶(ECGT) 等有关;在茶树中酯型儿茶素很容易被水解酶(GCH)水解为没食子酸和非酯型儿茶素。此外,还综述了国际上有关flavan-3-ols的合成、聚合、糖苷化和甲基化研究进展。
夏涛, 高丽萍, 刘亚军, 王云生, 刘莉, 赵磊, 蒋晓岚, 钱玉梅. 茶树酯型儿茶素生物合成及水解途径研究进展[J]. 中国农业科学, 2013, 46(11): 2307-2320.
XIA Tao, GAO Li-Ping, LIU Ya-Jun, WANG Yun-Sheng, LIU Li, ZHAO Lei, JIANG Xiao-Lan, QIAN Yu-Mei. Advances in Research of Biosynthesis and Hydrolysis Pathways of Gallated Catechins in Camellia sinensis[J]. Scientia Agricultura Sinica, 2013, 46(11): 2307-2320.
[1]Cabrera C, Artacho R, Giménez R. Beneficial effects of green tea-a review. Journal of the American College of Nutrition, 2006, 25: 79-99. [2]Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 2001, 126: 485-493. [3]Xie D Y, Sharma S B, Paiva N L, Ferreira D, Dixon R A. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science, 2003, 299: 396-399. [4]Dixon R A, Xie D Y, Sharma S B. Proanthocyanidins-a final frontier in flavonoid research? New Phytologist, 2005, 165: 9-28. [5]Dixon R A, Liu C, Jun J H. Metabolic engineering of anthocyanins and condensed tannins in plants. Current Opinion in Biotechnology, 2013, 24(3): 329-335. [6]Pang Y, Peel G J, Sharma S B, Tang Y, Dixon R A. A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 14210-14215. [7]Zhao J, Pang Y, Dixon R A. The Mysteries of proanthocyanidin transport and polymerization. Plant Physiology, 2010, 153: 437-443. [8]Zhao J, Dixon R A. MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell, 2009, 21: 2323-2340. [9]Verdier J, Zhao J, Torres-Jerez I, Ge S, Liu C, He X, Mysore K S, Dixon R A, Udvardi M K. MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: 1766-1771. [10]Hancock K R, Collette V, Fraser K, Greig M, Xue H, Richardson K, Jones C, Rasmussen S. Expression of the R2R3-MYB transcription factor TaMYB14 from trifolium arvense activates proanthocyanidin biosynthesis in the Legumes trifolium repens and Medicago sativa. Plant Physiology, 2012, 159: 1204-1220. [11]Akagi T, Katayama-Ikegami A, Kobayashi S, Sato A, Kono A, Yonemori K. Seasonal abscisic acid signal and a basic leucine zipper transcription factor, DkbZIP5, regulate proanthocyanidin biosynthesis in persimmon fruit. Plant Physiology, 2012, 158: 1089-1102. [12]Wang Y S, Gao L P, Shan Y, Liu Y J, Tian Y W, Xia T. Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae, 2012, 141: 7-16. [13]Saijo R. Pathway of gallic acid biosynthesis and its esterification with catechins in young tea shoots. Agricultural and Biological Chemistry, 1983, 47: 455-460. [14]Yang D, Liu Y, Sun M, Zhao L, Wang Y, Chen X, Wei C, Gao L, Xia T. Differential gene expression in tea (Camellia sinensis (L.) O. Kuntze ) calli with different morphologies and catechin contents. Journal of Plant Physiology, 2011,169: 163-175. [15]Wang Y S, Gao L P, Wang Z R, Liu Y J, Sun M L, Yang D Q, Wei C L, Shan Y, Xia T. Light-induced expression of genes involved in phenylpropanoid biosynthetic pathways in callus of tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae, 2011,133: 72-83. [16]Stafford H A, Lester H H. Flavan-3-ol Biosynthesis: The conversion of (+)-dihydroquercetin and flavan-3,4-cis-diol (leucocyanidin) to (+)-catechin by reductases extracted from cell suspension cultures of douglas fir. Plant Physiology, 1984, 76: 184-186. [17]Stafford H A, Lester H H. Flavan-3-ol Biosynthesis: The conversion of (+)-dihydromyricetin to its flavan-3,4-diol (leucodelphinidin) and to (+)-gallocatechin by reductases extracted from tissue cultures of Ginkgo biloba and Pseudotsuga menziesii. Plant Physiology, 1985, 78: 791-794. [18]Gross G G. From lignins to tannins: forty years of enzyme studies on the biosynthesis of phenolic compounds. Phytochemistry, 2008, 69: 3018-3031. [19]Niemetz R, Gross G G. Enzymology of gallotannin and ellagitannin biosynthesis. Phytochemistry, 2005, 66: 2001-2011. [20]Liu Y, Gao L, Liu L, Yang Q, Lu Z, Nie Z, Wang Y, Xia T. Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant [Camellia sinensis]. Journal of Biological Chemistry, 2012, 287(53): 44406-44417. [21]Li A X, Steffens J C. An acyltransferase catalyzing the formation of diacylglucose is a serine carboxypeptidase-like protein. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 6902-6907. [22]Fraser C M, Rider L W, Chapple C. An expression and bioinformatics analysis of the Arabidopsis serine carboxypeptidase-like gene family. Plant Physiology, 2005, 138: 1136-1148. [23]Mugford S T, Qi X Q, Bakht S, Hill L, Wegel E, Hughes R K, Papadopoulou K, Melton R, Philo M, Sainsbury F, Lomonossoff G P, Roy A D, Goss R J M, Osbourn A. A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell, 2009, 21: 2473-2484. [24]Lepiniec L, Debeaujon I, Routaboul J M, Baudry A, Pourcel L, Nesi N, Caboche M. Genetics and biochemistry of seed flavonoids. Annual Review of Plant Physiology and Plant Molecular Biology, 2006, 57: 405-430. [25]Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 2011, 62: 2465-2483. [26]夏涛, 高丽萍. 类黄酮及茶儿茶素生物合成途径及其调控研究进展. 中国农业科学, 2009, 42(8): 2899-2908. Xia T, Gao L P. Advances in biosynthesis pathways and regulation of flavonoids and catechins. Scientia Agricultura Sinica, 2009, 42(8): 2899-2908. (in Chinese) [27]Lin L Z, Chen P, Harnly J M. New phenolic components and chromatographic profiles of green and fermented teas. Journal of Agricultural and Food Chemistry, 2008, 56: 8130-8140. [28]Norimoto S. A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of the Lotus japonicas genome. Journal of Experimental Botany, 2005, 25: 2573-2585. [29]孙美莲, 王云生, 杨冬青, 韦朝领, 高丽萍, 夏涛, 单育, 骆洋. 茶树实时荧光定量 PCR 分析中内参基因的选择. 植物学报, 2010, 45: 579-587. Sun M L, Wang Y S, Yang D Q, Wei C L, Gao L P, Xia T, Shan Y, Luo Y. Reference genes for real-time fluorescence quantitative PCR in Camellia sinensis. Chinese Bulletin of Botany, 2010, 45: 579-587. (in chinese) [30]张立明, 王云生, 高丽萍, 夏涛. 茶树不同儿茶素含量愈伤组织的蛋白差异分析. 中国农业科学, 2010, 43: 4053-4062. Zhang L M, Wang Y S, Gao L P, Xia T. Analysis of differential protein expression of tea callus with different catechins contents. Scientia Agricultura Sinica, 2010, 43: 4053-4062. (in Chinese) [31]单育, 李伟伟, 王云生, 刘亚军, 王弘雪, 王晓帆, 卢忠尉, 田艳维, 高丽萍, 夏涛. 茶树幼苗发育过程中儿茶素合成与积累变化的研究. 安徽农业大学学报, 2011, 38(4): 600-605. Shan Y, Li W W, Wang Y S, Liu Y J, Wang H X,Wang X F, Lu Z W, Tian Y W, Gao L P, Xia T. Catechins synthesis and accumulation in tea seedlings at different development stages. Journal of Anhui Agricultural University, 2011, 38(4): 600-605. (in Chinese) [32]Zhang X L, Liu Y J, Gao K J, Zhao L, Liu L, Wang Y S, Sun M L, Gao L P, Xia T. Characterisation of anthocyanidin reductase from Shuchazao green tea. Journal of the Science of Food and Agriculture, 2012, 92: 1533-1539. [33]Liu Y, Gao L, Xia T, Zhao L. Investigation of the site-specific accumulation of catechins in the tea plant (Camellia sinensis (L.) O. Kuntze) via vanillin-HCl staining. Journal of Agricultural and Food Chemistry, 2009, 57: 10371-10376. [34]Dewick P, Haslam E. Phenol biosynthesis in higher plants. Gallic acid. Biochemical Journal, 1969, 113: 537. [35]Ishikura N, Hayashida S, Tazaki K. Biosynthesis of gallic and ellagic acids with 14C-labeled compounds in Acer and Rhus leaves. Botanical Magazine, 1984, 97: 355-367. [36]Dyer W E, Henstrand J M, Handa A K, Herrmann K M. Wounding induces the first enzyme of the shikimate pathway in Solanaceae. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86: 7370. [37] Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiology, 2006, 140: 637-646. [38]Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inze D, Van Breusegem F. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis.. Plant Physiology, 2005, 139: 806-821. [39]Morcuende R, Bari R, Gibon Y, Zheng W M, Pant B D, Blasing O, Usadel B, Czechowski T, Udvardi M K, Stitt M, Scheible W R Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environment, 2007, 30: 85-112. [40]Tzin V, Galili G. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Molecular Plant, 2010, 3: 956-972. [41]Fiedler E, Schultz G. Localization, purification, and characterization of shikimate oxidoreductase-dehydroquinate hydrolyase from stroma of spinach chloroplasts. Plant Physiology, 1985, 79: 212. [42]Singh S A, Christendat D. The DHQ-dehydroshikimate-SDH- shikimate-NADP (H) Complex: insights into metabolite transfer in the shikimate pathway. Crystal Growth and Design, 2007, 7: 2153-2160. [43]Peek J, Lee J, Hu S, Senisterra G, Christendat D. Structural and mechanistic analysis of a novel class of shikimate dehydrogenase: Evidence for a conserved catalytic mechanism in the shikimate dehydrogenase family. Biochemistry, 2011, 50: 8616-8627. [44]Singh S, Korolev S, Koroleva O, Zarembinski T, Collart F, Joachimiak A, Christendat D. Crystal structure of a novel shikimate dehydrogenase from Haemophilus influenzae. Journal of Biological Chemistry, 2005, 280: 17101. [45]Singh S A, Christendat D. Structure of Arabidopsis dehydroquinate dehydratase-shikimate dehydrogenase and implications for metabolic channeling in the shikimate pathway. Biochemistry, 2006, 45: 7787-7796. [46]Ding L, Hofius D, Hajirezaei M R, Fernie AR, Börnke F, Sonnewald U. Functional analysis of the essential bifunctional tobacco enzyme 3-dehydroquinate dehydratase/shikimate dehydrogenase in transgenic tobacco plants. Journal of Experimental Botany, 2007, 58: 2053-2067. [47]Ingo Werner A B, Wolfgang Eisenreich. Retrobiosynthetic NMR studies with 13C-labeled glucose. Journal of Biological Chemistry, 1997, 272: 25474-25482. [48]Werner R A, Rossmann A, Schwarz C, Bacher A, Schmidt H L, Eisenreich W. Biosynthesis of gallic acid in Rhus typhina: discrimination between alternative pathways from natural oxygen isotope abundance. Phytochemistry, 2004, 65: 2809-2813. [49]Ossipov V, Salminen J P, Ossipova S, Haukioja E, Pihlaja K. Gallic acid and hydrolysable tannins are formed in birch leaves from an intermediate compound of the shikimate pathway. Biochemical Systematics and Ecology, 2003, 31: 3-16. [50]Muir R M, Ibáñez A M, Uratsu S L, Ingham E S, Leslie C A, McGranahan G H, Batra N, Goyal S, Joseph J, Jemmis E D. Mechanism of gallic acid biosynthesis in bacteria (Escherichia coli) and walnut (Juglans regia). Plant Molecular Biology, 2011, 75: 555-565. [51]Akagi T, Ikegami A, Suzuki Y, Yoshida J, Yamada M, Sato A, Yonemori K. Expression balances of structural genes in shikimate and flavonoid biosynthesis cause a difference in proanthocyanidin accumulation in persimmon (Diospyros kaki Thunb.) fruit. Planta, 2009, 230: 899-915. [52]Li A X, Eannetta N, Ghangas G S, Steffens J C. Glucose polyester biosynthesis. Purification and characterization of a glucose acyltransferase. Plant Physiology, 1999, 121: 453-460. [53]Lehfeldt C, Shirley A M, Meyer K, Ruegger M O, Cusumano J C, Viitanen P V, Strack D, Chapple C Cloning of the SNG1 gene of arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism. Plant Cell, 2000, 12: 1295-1306. [54]Stehle F, Stubbs M, Strack D, Milkowski C. Heterologous expression of a serine carboxypeptidase-like acyltransferase and characterisation of the kinetic mechanism. FEBS Journal, 2008, 275: 775-787. [55]Teutschbein J, Gross W, Nimtz M, Milkowski C, Hause B, Strack D. Identification and localization of a lipase-like acyltransferase in phenylpropanoid metabolism of tomato (Solanum lycopersicum). Journal of Biological Chemistry, 2010, 285: 38374-38381. [56]Campbell J A, Davies G J, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochemical Engineering Journal, 1997, 326: 929-939. [57]Coutinho P M, Deleury E, Davies G J, Henrissat B. An evolving hierarchical family classification for glycosyltransferases. Journal of Molecular Biology, 2003, 328: 307-317. [58]Hou B, Lim E K, Higgins G S, Bowles D J. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. Journal of Biological Chemistry, 2004, 279: 47822-47832. [59]Ross J, Li Y, Lim E, Bowles D J. Higher plant glycosyltransferases. Genome Biology, 2001, 2(2): REVIEWS3004. [60]Wang X. Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Letters, 2009, 583: 3303-3309. [61]Hrazdina G, Zobel A M, Hoch H C. Biochemical, immunological, and immunocytochemical evidence for the association of chalcone synthase with endoplasmic reticulum membranes. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84: 8966-8970. [62]Khater F, Fournand D, Vialet S, Meudec E, Cheynier V, Terrier N. Identification and functional characterization of cDNAs coding for hydroxybenzoate/hydroxycinnamate glucosyltransferases co-expressed with genes related to proanthocyanidin biosynthesis. Journal of Experimental Botany, 2012, 63: 1201-1214. [63]Akoh C C, Lee G C, Liaw Y C, Huang T H, Shaw J F. GDSL family of serine esterases/lipases. Progress in Lipid Research, 2004, 43(6): 534-552. [64]Clauss K, Baumert A, Nimtz M, Milkowski C, Strack D. Role of a GDSL lipase‐like protein as sinapine esterase in Brassicaceae. The Plant Journal, 2008, 53: 802-813. [65]Clauss K, von Roepenack-Lahaye E, Boettcher C, Roth M R, Welti R, Erban A, Kopka J, Scheel D, Milkowski C, Strack D. Over expression of sinapine esterase BnSCE3 in Brassica napus seeds triggers global changes in seed metabolism. Plant Physiology, 2011, 155: 1127-1145. [66]Aguilar C N, Rodríguez R, Gutiérrez-Sánchez G, Augur C, Favela-Torres E, Prado-Barragan L A, Ramírez-Coronel A, Contreras- Esquivel J C. Microbial tannases: advances and perspectives. Applied Microbiology and Biotechnology, 2007, 76: 47-59. [67]Belur P, Mugeraya G. Microbial production of taimase: state of the art. Research Journal of Microbiology, 2011, 6: 25-40. [68]Niehaus J U, Gross G G. A gallotannin degrading esterase from leaves of Pedunculate oak. Phytochemistry, 1997, 160:1555-1560. [69]Noguchi A, Sasaki N, Nakao M, Fukami H, Takahashi S, Nishino T, Nakayama T. cDNA cloning of glycosyltransferases from Chinese wolfberry (Lycium barbarum L.) fruits and enzymatic synthesis of a catechin glucoside using a recombinant enzyme (UGT73A10). Journal of Molecular Catalysis B-Enzymatic, 2008, 55: 84-92. [70]Shimoda K, Otsuka T, Morimoto Y, Hamada H, Hamada H. Glycosylation and malonylation of quercetin, epicatechin, and catechin by cultured plant cells. Chemistry Letters, 2007, 36: 1292-1293. [71]Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul J M, Debeaujon I, Klein M. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin- accumulating cells of the seed coat. The Plant Cell, 2007, 19: 2023-2038. [72]Zhao J, Huhman D, Shadle G, He X Z, Sumner L W, Tang Y, Dixon R A. MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. The Plant Cell, 2011, 23: 1536-1555. [73]Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant Journal, 2004, 37: 104-114. [74]Baxter I R, Young J C, Armstrong G, Foster N, Bogenschutz N, Cordova T, Peer W A, Hazen S P, Murphy A S, Harper J F. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 2649-2654. [75]Pourcel L, Routaboul J M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell, 2005, 17: 2966-2980. [76]Savitri Kumar N, Maduwantha B W W M, Kumar V, Nimal Punyasiri P A, Sarath B A I. Separation of proanthocyanidins isolated from tea leaves using high-speed counter-current chromatography. Journal of Chromatography A, 2009, 1216: 4295-4302. [77]Lv H P, Lin Z, Tan J F, Guo L. Study on EGCG'' Me in tea. Food and Fermentation Industries, 2008, 34(1): 22-25. [78]Winkel-Shirley B. The biosynthesis of flavonoids//E. Grotewold, ed. The Science of Flavonoids. New York: Springer Science & Business Media, 2006: 75-95. [79]Kao Y H, Chang H H, Lee M J, Chen C L. Tea, obesity, and diabetes. Molecular Nutrition & Food Research, 2006, 50: 188-210. [80]Wolfram S, Wang Y, Thielecke F. Anti-obesity effects of green tea: from bedside to bench. Molecular Nutrition & Food Research, 2006, 50: 176-187. |
[1] | 林馨颖,王鹏杰,杨如兴,郑玉成,陈潇敏,张磊,邵淑贤,叶乃兴. 高茶氨酸茶树新品系‘福黄1号’黄化变异机理[J]. 中国农业科学, 2022, 55(9): 1831-1845. |
[2] | 郭永春, 王鹏杰, 金珊, 侯炳豪, 王淑燕, 赵峰, 叶乃兴. 基于WGCNA鉴定茶树响应草甘膦相关的基因共表达模块[J]. 中国农业科学, 2022, 55(1): 152-166. |
[3] | 樊晓静, 于文涛, 蔡春平, 林浥, 王泽涵, 房婉萍, 张见明, 叶乃兴. 利用SNP标记构建茶树品种资源分子身份证[J]. 中国农业科学, 2021, 54(8): 1751-1760. |
[4] | 陈志,张逸,路钦越,郭佳禾,梁艳,张明怡星,杨章平. 茶树油对LPS诱导的奶牛乳腺炎的作用及其机制[J]. 中国农业科学, 2021, 54(14): 3124-3133. |
[5] | 崔一芳,郑敏,丁双阳,朱奎. 蜡样芽孢杆菌致吐毒素的毒性作用与生物合成研究进展[J]. 中国农业科学, 2021, 54(12): 2666-2674. |
[6] | 秦秋红,何旭江,江武军,王子龙,曾志将. 东方蜜蜂幼虫封盖信息素含量及生物合成通路[J]. 中国农业科学, 2021, 54(11): 2464-2475. |
[7] | 关丽君,薛云,丁文文,赵战勤. 多杀性巴氏杆菌荚膜的生物合成及其调控机制研究进展[J]. 中国农业科学, 2020, 53(3): 658-668. |
[8] | 余爱丽,赵晋锋,成锴,王振华,张鹏,刘鑫,田岗,赵太存,王玉文. 谷子萌发吸水期关键代谢途径的筛选与分析[J]. 中国农业科学, 2020, 53(15): 3005-3019. |
[9] | 张彬,李萌,刘晶,王俊杰,侯思宇,李红英,韩渊怀. 绿小米和白小米谷子籽粒叶绿素合成途径结构基因的表达分析[J]. 中国农业科学, 2020, 53(12): 2331-2339. |
[10] | 肖罗丹, 唐磊, 王伟东, 高岳芳, 黄伊凡, 孟阳, 杨亚军, 肖斌. 茶树CsWRKYIIcs转录因子的克隆及功能分析[J]. 中国农业科学, 2020, 53(12): 2460-2476. |
[11] | 富丽霞,马涛,刁其玉,成述儒,宋雅喆,孙卓琳. 肉羊精料可代谢蛋白质预测模型的建立[J]. 中国农业科学, 2019, 52(3): 539-549. |
[12] | 郝宝成, 宋向东, 高艳, 王学红, 刘宇, 李元曦, 梁妍, 陈柯源, 胡毓瑶, 邢小勇, 胡永浩, 梁剑平. 产苦马豆素疯草内生真菌Alternaria Section Undifilum oxytropis的诱变筛选[J]. 中国农业科学, 2019, 52(15): 2716-2728. |
[13] | 刘玉飞,金基强,姚明哲,陈亮. 茶树咖啡碱合成酶基因稀有等位变异TCS1g的筛选、克隆及功能[J]. 中国农业科学, 2019, 52(10): 1772-1783. |
[14] | 冯一璐,傅晓斌,吴帆,崔宏春,李红亮. 茶尺蠖信息素结合蛋白PBP2的基因克隆、原核表达及其结合功能[J]. 中国农业科学, 2017, 50(3): 504-512. |
[15] | 戴思兰,洪艳. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种[J]. 中国农业科学, 2016, 49(3): 529-542. |
|