中国农业科学 ›› 2020, Vol. 53 ›› Issue (3): 658-668.doi: 10.3864/j.issn.0578-1752.2020.03.016
• 畜牧·兽医·资源昆虫 • 上一篇
收稿日期:
2018-09-03
接受日期:
2019-11-05
出版日期:
2020-02-01
发布日期:
2020-02-13
通讯作者:
赵战勤
作者简介:
关丽君,E-mail:gljguanlijun@163.com。
基金资助:
GUAN LiJun1,XUE Yun1,DING WenWen1,ZHAO ZhanQin1,2()
Received:
2018-09-03
Accepted:
2019-11-05
Online:
2020-02-01
Published:
2020-02-13
Contact:
ZhanQin ZHAO
摘要:
多杀性巴氏杆菌可广泛感染多种动物,引起出血性败血症或传染性肺炎。多杀性巴氏杆菌的细胞表面具有一层黏液样的荚膜多糖,是其重要的结构成分和毒力因子,在细菌与宿主的相互作用中起到重要作用,促进细菌粘附于宿主表面,增强细菌的毒力。多杀性巴氏杆菌荚膜的分子结构与脊椎动物的糖胺聚糖(GAG)相似,都由重复的二糖单元聚合形成线性多糖链,这是该菌在感染宿主过程中进行分子伪装、抵抗吞噬和发生免疫逃逸的重要免疫学物质基础。近年来,在多杀性巴氏杆菌荚膜的生物合成及其调控机制方面取得了一系列重要的研究进展,为多杀性巴氏杆菌荚膜的分子致病机理研究提供了一定的基础知识,为多杀性巴氏杆菌荚膜多糖疫苗的研发提供了理论依据。文章系统阐述了多杀性巴氏杆菌荚膜的生物合成途径及其表达调控机制,主要包括荚膜的血清分型、荚膜多糖的成分与结构、荚膜的生物合成基因簇与功能、荚膜多糖的分子合成机制、荚膜生物合成基因簇的表达调控机制,共5个方面。依据荚膜抗原,多杀性巴氏杆菌可分为A、B、D、E、F共5种荚膜血清型。A型荚膜GAG成分是透明质酸、D型是肝素、F型是软骨素,分别由其相应的二糖单元[β-葡糖醛酸/β-乙酰葡糖胺]、[β-葡糖醛酸/α-乙酰葡糖胺]、[β-葡糖醛酸/β-乙酰半乳糖胺]重复构成;B型荚膜多糖是由阿拉伯糖、甘露糖和半乳糖以某种结构形式聚合而成,E型荚膜多糖的成分与化学结构尚不确定。多杀性巴氏杆菌A型、B型、D型、E型和F型荚膜多糖生物合成的相关基因以基因簇的形式存在,分为3个不同的功能区,R1、R2和R3;R1区负责转运荚膜多糖,R2区负责单糖的活化和荚膜多糖的组装,R3区负责荚膜多糖的修饰(磷脂替换);根据R2区结构和基因数量的不同又可将5种荚膜的生物合成基因簇分为两类:A型、D型、F型为I类,R2区含有4个基因;B型和E型为II类,R2区含有9个基因,且利用R2区特异性基因设计引物,可以通过PCR方法快速鉴定多杀性巴氏杆菌的荚膜血清型。多杀性巴氏杆菌的荚膜GAG在细胞质中生成,由R1区编码蛋白所形成的ABC转运体输出至细胞表面,末端糖脂通过分子间氢键与细胞壁紧密结合,形成菌体表面的粘液状荚膜;在多杀性巴氏杆菌荚膜GAG的生物合成过程中,位于R2区的糖基转移酶基因决定了活化单糖的种类和组装后荚膜多糖的类型。在多杀性巴氏杆菌荚膜的生物合成基因簇中,R1和R2区形成一个操纵子,转录方向一致,而R3转录方向与其相反,两者的启动子区域均位于R2和R3区域之间的DNA序列上;多杀性巴氏杆菌荚膜生物合成基因簇的转录过程受Fis蛋白正向调控,翻译过程主要受Hfq蛋白正向调节。
关丽君,薛云,丁文文,赵战勤. 多杀性巴氏杆菌荚膜的生物合成及其调控机制研究进展[J]. 中国农业科学, 2020, 53(3): 658-668.
GUAN LiJun,XUE Yun,DING WenWen,ZHAO ZhanQin. Advances in Mechanisms of Biosynthesis and Regulation of Pasteurella multocida Capsule[J]. Scientia Agricultura Sinica, 2020, 53(3): 658-668.
表1
I类荚膜生物合成基因簇及编码蛋白的功能"
功能区 Region | 开放阅读框(ORF) | A型/D型/F型编码的蛋白质 Protein encoded by type A/D/F | 功能 Function | ||
---|---|---|---|---|---|
A型 Type A | D型 Type B | F型 Type D | |||
R1 | hexA | hexA | hexA | HexA | ATP结合蛋白 ATP-binding protein |
hexB | hexB | hexB | HexB | 内膜蛋白 Inner membrane protein | |
hexC | hexC | hexC | HexC | 具有周质结构域的内膜蛋白 Inner membrane protein with a periplasmic domain | |
hexD | hexD | hexD | HexD | 外膜蛋白(脂蛋白) Outer membrane protein (lipoprotein) | |
R2 | hyaB | dcbB | fcbB | HyaB/DcbB/FcbB | 糖基转移酶 Glycosyltransferase |
hyaC | dcbC | fcbC | HyaC/DcbC/FcbC | UDP-葡萄糖脱氢酶,催化UDP-葡萄糖转化为UDP-葡糖醛酸 UDP-glucose dehydrogenase, catalyzing the conversion of UDP-glucose to UDP-glucuronic acid | |
hyaD | dcbF | fcbD | HyaD/DcbF/FcbD | 透明质酸合成酶/肝素合成酶/软骨素合成酶 PmHAS/PmHS/PmCS | |
hyaE | dcbE | fcbE | HyaE/ DcbE / FcbE | 起始酶,将重复单元的第一个残基转移至 Poly-KDO linker Initiates enzyme, which transfers from the first residue of the repeat-unit to the poly-KDO linker | |
R3 | phyA | phyA | phyA | PhyA | β-KDO糖基转移酶 β-Kdo glycosyltransferase |
phyB | phyB | phyB | PhyB | β-KDO糖基转移酶 β-Kdo glycosyltransferase |
表2
II类荚膜生物合成基因簇及编码蛋白的功能"
功能区 Region | 开放阅读框(ORF) | B型/E型编码的蛋白质 Protein encoded by type B/E | 功能 Function | |
---|---|---|---|---|
B型 Type B | E型 Type F | |||
R1 | cexA | cexA | CexA | ATP结合蛋白 ATP-binding protein |
cexB | cexB | CexB | 内膜蛋白 Inner membrane protein | |
cexC | cexC | CexC | 具有周质结构域的内膜蛋白 Inner membrane protein with a periplasmic domain | |
cexD | cexD | CexD | 外膜蛋白 Outer membrane protein | |
R2 | bcbA | ecbA | BcbA/EcbA | UDP-N-乙酰葡糖胺2-差向异构酶 UDP-N-acetylglucosamine 2-epimerase |
bcbB | ecbB | BcbB/EcbB | UDP-N-乙酰-D-甘露糖胺糖醛酸脱氢酶 UDP-N-acetyl-D-mannosaminuronic acid dehydrogenase | |
bcbC | ecbK | BcbC/EcbK | 假定的糖基转移酶,可能参与活化单糖的聚合 Putative glycosyltransferase, which likely involved in polymerization of the activated sugar | |
bcbDEFGI | ecbDEFGI | BcbDEFGI/EcbDEFGI | 未知 Unknown | |
bcbH | ecbJ | BcbH/EcbJ | 未知,是B型或E型的独有基因 Unknown, unique to serogroup B or E | |
R3 | lipA | lipA | LipA | 参与多糖的磷脂替换 Involved in phospholipid substitution of GAG |
lipB | lipB | LipB | 参与多糖的磷脂替换 Involved in phospholipid substitution of GAG |
[1] | ZEIDAN A A, POULSEN V K, JANZEN T, BULDO P, DERKX P M F, OREGAARD G, NEVES A R. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiology Reviews, 2017,41(supp_1):S168-S200. |
[2] | LISTON S D, MCMAHON S A, LE BAS A, SUITS M D L, NAISMITH J H, WHITFIELD C. Periplasmic depolymerase provides insight into ABC transporter-dependent secretion of bacterial capsular polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(21):E4870-E4879. |
[3] | CARTER G R, BIGLAND C H . Dissociation and virulence in strains of Pasteurella multocida isolated from a variety of lesions. Canadian Journal of Comparative Medicine and Veterinary Science, 1953,17(17):473-479. |
[4] | 王楷宬, 陆承平, 范伟兴 . 细菌荚膜多糖. 微生物学报, 2011,51(12):1578-1584. |
WANG K C, LU C P, FAN W X . Bacterial capsular polysaccharide. Acta Microbiologica Sinica, 2011,51(12):1578-1584. (in Chinese) | |
[5] | KHAMESIPOUR F, MOMTAZ H, MAMOREH MA . Occurrence of virulence factors and antimicrobial resistance in Pasteurella multocida strains isolated from slaughter cattle in Iran. Frontiers in Microbiology, 2014,5:536. |
[6] | FERNANDEZ-ROJAS M A, VACA S, REYES-LOPEZ M, DE LA GARZA M, AGUILAR-ROMERO F, ZENTENO E, SORIANO- VARGAS E, NEGRETE-ABASCAL E . Outer membrane vesicles of Pasteurella multocida contain virulence factors. MicrobiologyOpen, 2014,3(5):711-717. |
[7] | AHMAD T A, RAMMAH S S, SHEWEITA S A, HAROUN M, EI-SAYED L H. Development of immunization trials against Pasteurella multocida. Vaccine, 2014,32(8):909-917. |
[8] | LITSCHKO C, OLDRINI D, BUDDE I, BERGER M, MEENS J, GERARDY-SCHAHN R, BERTI F, SCHUBERT M, FIEBIG T . A new family of capsule polymerases generates teichoic acid-like capsule polymers in Gram-negative pathogens. MBio, 2018,9(3):e00641-18. |
[9] | 姜鹏 . Vibrio sp. QY101胞外多糖的分离纯化及抗细菌生物被膜活性研究[D]. 中国海洋大学, 2011. |
JIANG P . The studies on isolation, purification and antlbiofilm activities of the exopolysaccharide from Vibrio sp. QY 101[D]. Ocean University of China, 2011. ( in Chinese) | |
[10] | 顾宏伟, 陆承平 . 兔多杀性巴氏杆菌铁调节外膜蛋白的小鼠免疫效果分析. 中国农业科学, 2007,40(5):1073-1078. |
GU H W, LU C P . Evaluation of the immunization of iron-regulated outer membrane proteins (iromps) of leporid Pasteurella multocida in mice model. Scientia Agricultura Sinica, 2007,40(5):1073-1078. (in Chinese) | |
[11] | KATECHAKIS N, MARAKI S, DRAMITINOU I, MAROLACHAKI E, KOUTLA C, IOANNIDOU E . An unusual case of Pasteurella multocida bacteremic meningitis. Journal of Infection and Public Health, 2019,12(1):95-96. |
[12] | SUDARYATMA P E, NAKAMURA K, MEKATA H, SEKIGUCHI S, KUBO M, KOBAYASHI I, SUBANGKIT M, GOTO Y, OKABAYASHI T . Bovine respiratory syncytial virus infection enhances Pasteurella multocida adherence on respiratory epithelial cells. Veterinary Microbiology, 2018,220:33-38. |
[13] | TUN A E, BENEDICENTI L, GALBAN E M . Pasteurella multocida meningoencephalomyelitis in a dog secondary to severe periodontal disease. Clinical Case Reports, 2018,6(6):1137-1141. |
[14] | PAK S, VALENCIA D, DECKER J, VALENCIA V, ASKAROGLU Y . Pasteurella multocida pneumonia in an immunocompetent patient: case report and systematic review of literature. Lung India Official Organ of Indian Chest Society, 2018,35(3):237. |
[15] | CARTER G R . The type specific capsular antigen of Pasteurella multocida. Canadian Journal of Medical Science, 1952,30(1):48-53. |
[16] | RIMLER R B, RHOADES K R . Serogroup F. a new capsule serogroup of Pasteurella multocida. Journal of Clinical Microbiology, 1987,25(4):615-618. |
[17] | PANDITt K K, SMITH J E . Capsular hyaluronic acid in Pasteurella multocida type A and its counterpart in type D. Research in Veterinary Science, 1993,54(1):20-24. |
[18] | DEANGELIS P L, GUNAY N S, TOIDA T, MAO W J, LINHARDT R J . Identification of the capsular polysaccharides of type D and F Pasteurella multocida as unmodified heparin and chondroitin, respectively. Carbohydrate Research, 2002,337(17):1547-1552. |
[19] | MUNIANDY J B, MUKKUR T . Virulence, purification, structure and protective properties of the putative capsular polysaccharide of Pasteurella multocida type 6:B. Aciar Proceedings, 1993: 47-54. |
[20] | WILSON B A, HO M . Pasteurella multocida: from zoonosis to cellular microbiology. Clinical Microbiology Reviews, 2013,26(3):631-655. |
[21] | WILKIE I W, HARPER M, BOYCE J D, ADLER B . Pasteurella multocida: diseases and pathogenesis. Springer Berlin Heidelberg, 2012,361(9):1-22. |
[22] | ASKI H S, TABATABAEI M . Occurrence of virulence-associated genes in Pasteurella multocida isolates obtained from different hosts. Microb Pathog, 2016,96:52-57. |
[23] | 赵战勤, 刘倩玉, 席晓剑, 王乐, 邓雯, 薛云, 张春杰 . 猪源A型和D型多杀性巴氏杆菌强毒菌株的生物学特性比较研究. 中国预防兽医学报, 2016,38(5):366-370. |
ZHAO Z Q, LIU Q Y, XI X J, WANG L, DENG W, XUE Y, ZHANG C J . A comparative study on biological characterization of Pasteurella multocida serogroups A and D isolates from swine in China. Chinese Journal of Preventive Veterinary Medicine, 2016,38(5):366-370. (in Chinese) | |
[24] | 赵战勤, 乔鹏芸, 刘倩玉, 薛云, 丁轲 . 多杀性巴氏杆菌的分型及其灭活疫苗研究进展. 中国预防兽医学报, 2017,39(7):600-604. |
ZHAO Z Q, QIAO P Y, LIU Q Y, XUE Y, DING K . Advances in the classification and inactivated vaccine of Pasteurella multocida. Chinese Journal of Preventive Veterinary Medicine, 2017,39(7):600-604. (in Chinese) | |
[25] | 席晓剑, 赵战勤, 薛云, 龙塔, 王乐, 刘会胜 . 猪源多杀性巴氏杆菌的病原流行病学及其毒力特性. 中国兽医学报, 2015,35(8):1205-1210. |
XI X J, ZHAO Z Q, XUE Y, LONG T, WANG L, LIU H S . Prevalence and virulence of Pasteurella multocida in pig farms in central China. Chinese Journal of Veterinary Science, 2015,35(8):1205-1210. (in Chinese) | |
[26] | LIU H S, ZHAO Z Q, XI X J, XUE Q, LONG T, XUE Y . Occurrence of Pasteurella multocida among pigs with respiratory disease in China between 2011 and 2015. Irish Veterinary Journal, 2017,70:2. |
[27] | ROSNER H, GRIMMECKE H D, KNIREL Y A, SHASHKOV A S . Hyaluronic acid and a (1→4)-β-d-xylan, extracellular polysaccharides of Pasteurella multocida (Carter type A) strain 880. Carbohydrate Research, 1992,223(4):329. |
[28] | DEANGELIS P L . Hyaluronan synthases: fascinating glycosyltransferases from vertebrates, bacterial pathogens, and algal viruses. Cellular and Molecular Life Sciences Cmis, 1999,56(7/8):670-682. |
[29] | DEANGELIS P L . Microbial glycosaminoglycan glycosyltransferases. Glycobiology, 2002,12(1):9R-16R. |
[30] | TOWNLEY R A, BULOW H E . Deciphering functional glycosaminoglycan motifs in development. Current Opinion in Structural Biology, 2018,50:144-154. |
[31] | DEANGELIS P L . Evolution of glycosaminoglycans and their glycosyltransferases: implications for the extracellular matrices of animals and the capsules of pathogenic bacteria. Anatomical Record- advances in Integrative Anatomy and Evolutionary Biology, 2010,268(3):317-326. |
[32] | BOYCE J D, CHUNG J Y, ADLER B . Genetic organisation of the capsule biosynthetic locus of Pasteurella multocida M1404 (B:2). Veterinary Microbiology, 2000,72:121-134. |
[33] | CHUNG J Y, ZHANG Y, ADLER B . The capsule biosynthetic locus of Pasteurella multocida A:1. Fems Microbiology Letters, 1998,166(2):289-296. |
[34] | BOYCE J D, CHUNG J Y, ADLER B . Pasteurella multocida capsule: composition, function and genetics. Journal of Biotechnology, 2000,83(1):153-160. |
[35] | LIU W, YANG M, XU Z, ZHENG H, LIANG W, ZHOU R, WU B, CHEN H . Complete genome sequence of Pasteurella multocida HN06, a toxigenic strain of serogroup D. Journal of Bacteriology, 2012,194(12):3292-3293. |
[36] | TOWNSEND K M, BOYCE J D, CHUNG J Y, FROST A J, ADLER B . Genetic organization of Pasteurella multocida cap loci and development of a multiplex capsular PCR typing system. Journal of Clinical Microbiology, 2001,39(3):924-929. |
[37] | ROBERTS I S . The biochemistry and genetics of capsular polysaccharide production in bacteria. Annual Review of Microbiology, 1996,50:285-315. |
[38] | DEANGELIS P L . Enzymological characterization of the Pasteurella multocida hyaluronic acid synthase. Biochemistry, 1996,35(30):9768-9771. |
[39] | DEANGELIS P L, WHITE C L . Identification and molecular cloning of a heparosan synthase from Pasteurella multocida type D. Journal of Biological Chemistry, 2002,277(9):7209-7213. |
[40] | DEANGELIS P L, PADGETT-MCCUE A J . Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F. Journal of Biological Chemistry, 2000,275(31):24124-24129. |
[41] | WILLIS L M, STUPAK J, RICHARDS M R, LOWARY T L, LI J, WHITFIELD C . Conserved glycolipid termini in capsular polysaccharides synthesized by ATP-binding cassette transporter-dependent pathways in Gram-negative pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(19):7868-7873. |
[42] | WILLIS L M, WHITFIELD C . KpsC and KpsS are retaining 3-deoxy-D-manno-oct-2-uloso-nic acid (Kdo) transferases involved in synthesis of bacterial capsules. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(51):20753-20758. |
[43] | OVCHINNIKOVA O G, MALLETTE E, KOIZUMI A, LOWARY T L, KIMBER M S, WHITFIELD C . Bacterial beta-Kdo glycosyltransferases represent a new glycosyltransferase family (GT99). Proceedings of the National Academy of Sciences of the United States of America, 2016,113(22):E3120-3129. |
[44] | DEANGELIS P L, WHITE C L . Identification of a distinct, cryptic heparosan synthase from Pasteurella multocida types A, D, and F. Journal of Bacteriology, 2004,186(24):8529-8532. |
[45] | DEANGELIS P L . Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase. Journal of Biological Chemistry, 1999,274(37):26557-26562. |
[46] | JING W, DEANGELIS P L . Dissection of the two transferase activities of the Pasteurella multocida hyaluronan synthase: two active sites exist in one polypeptide. Glycobiology, 2000,10(9):883-889. |
[47] | KANE T A, WHITE C L, DEANGELIS P L . Functional characterization of PmHS1, a Pasteurella multocida heparosan synthase. Journal of Biological Chemistry, 2006,281(44):33192-33197. |
[48] | LINHARDT R J, DORDICK J S, DEANGELIS P L, LIU J . Enzymatic synthesis of glycosaminoglycan heparin. Seminars in Thrombosis and Hemostasis, 2007,33(5):453-465. |
[49] | TRACY B S, AVCI F Y, LINHARDT R J, DeAngelis P L . Acceptor specificity of the Pasteurella hyaluronan and chondroitin synthases and production of chimeric glycosaminoglycans. Journal of Biological Chemistry, 2007,282(1):337-344. |
[50] | WILLIS E . Structure and biosynthesis of capsular polysaccharides synthesized via ABC transporter-dependent processes. Carbohydrate Research, 2013,378:35-44. |
[51] | STEEN J A, STEEN J A, PAUL H, TORSTEN S, IAN W, MARINA H, BEN A, BOYCE J D . Fis is essential for capsule production in Pasteurella multocida and regulates expression of other important virulence factors. PLoS Pathogens, 2010,6(2):e1000750. |
[52] | DORMAN C J, DEIGHAN P . Regulation of gene expression by histone-like proteins in bacteria. Current Opinion in Genetics and Development, 2003,13(2):179-184. |
[53] | BAGCHI A . Structural characterization of Fis - a transcriptional regulator from pathogenic Pasteurella multocida essential for expression of virulence factors. Gene, 2015,554(2):249-253. |
[54] | WATT J M, SWIATLO E, WADE M M, CHAMPLIN F R . Regulation of capsule biosynthesis in serotype A strains of Pasteurella multocida. Fems Microbiology Letters, 2003,225(1):9-14. |
[55] | PENG Z, LIANG W, LIU W, WU B, TANG B, TAN C, ZHOU R, CHEN H . Genomic characterization of Pasteurella multocida HB01, a serotype A bovine isolate from China. Gene, 2016,581(1):85-93. |
[56] | MEGROZ M, KLEIFELE O, WRIGHT A, POWELL D, HARRISON P, ADLER B, HARPER M, BOYCE J D . The RNA-binding chaperone Hfq is an important global regulator of gene expression in Pasteurella multocida and plays a crucial role in production of a number of virulence factors, including hyaluronic acid capsule. Infection and Immunity, 2016,84(5):1361-1370. |
[57] | CARMICHAEL G G . Isolation of bacterial and phage proteins by homopolymer RNA-cellulose chromatography. Journal of Biological Chemistry, 1975,250(15):6160-6167. |
[58] | FELICIANO J R, GRILO A M, GUERREIRO S I, Sousa S A, Leitao J H . Hfq: a multifaceted RNA chaperone involved in virulence. Future Microbiology, 2016,11(1):137-151. |
[59] | GULLIVER E L, WRIGHT A, LUCAS D D, MEGROZ M, KLEIFELD O, SCHITTENHELM R B, POWELL D R, SEEMANN T, BULITTA J B, HARPER M, BOYCE J D . Determination of the small RNA GcvB regulon in the Gram-negative bacterial pathogen Pasteurella multocida and identification of the GcvB seed binding region. RNA, 2018,24(5):704-720. |
[60] | FROHLICH K S, VOGEL J . Activation of gene expression by small RNA. Current Opinion in Microbiology, 2009,12(6):674-682. |
[61] | ZHOU G, GROTH T . Host responses to biomaterials and anti- inflammatory design-a brief review. Macromolecular Bioscience, 2018: e1800112. |
[62] | BAT-ERDENE U, QUAN E, CHAN K, LEE B M, MATOOK W, LEE K Y, ROSALES J L . Neutrophil TLR4 and PKR are targets of breast cancer cell glycosaminoglycans and effectors of glycosaminoglycan- induced APRIL secretion. Oncogenesis, 2018,7(6):45. |
[63] | GOVINDARAJU P, TODD L, SHETYE S, MONSLOW J, PURE E. , CD44-dependentinflammation fibrogenesis,collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing. Matrix Biology, 2019, 75-76:314-330. |
[64] | BOUGATEF H, KRICHEN F, CAPITANI F, AMOR I B, MACCARI F, MANTOVANI , V, GALEOTTI F, VOLPI N, BOUGATEF A, SILA A . Chondroitin sulfate or dermatan sulfate from corb (Sciaena umbra) skin: purification, structural analysis and anticoagulant effect. Carbohydrate Polymers, 2018,196:272-278. |
[65] | JIAN W H, WANG H C, KUAN C H, Chen M H, Wu H C, Sun J S, Wang T W . Glycosaminoglycan-based hybrid hydrogel encapsulated with polyelectrolyte complex nanoparticles for endogenous stem cell regulation in central nervous system regeneration. Biomaterials, 2018,174:17-30. |
[66] | FINLAND M, SUTLIFF W D . Specific antibody response of human subjects to intracutaneous injection of pneumococcus products. The Journal of Experimental Medicine, 1932,55(6):853-865. |
[67] | HOAGLAND C L, BEESON P B, GOEBEL W F . The capsular polysaccharide of the type XIV pneumococcus and its relationship to the specific substances of human blood. Science, 1938,88(2281):261-263. |
[68] | ROBBINS J B, AUSTRIAN R, LEE C J, RASTOGI S C, SCHIFFMAN G, HENRICHSEN J, MÄKELÄ P H, BROOME C V, FACKLAM R R, TIESJEMA R H . Considerations for formulating the second-generation pneumococcal capsular polysaccharide vaccine with emphasis on the cross-reactive types within groups. The Journal of Infectious Disease, 1983,148(6):1136-1159. |
[69] | HARRISON L H . Prospects for vaccine prevention of meningococcal infection. Clinical Microbiology Reviews, 2006,19(1):142-164. |
[70] | ZAREI A E, ALMEHDAR H A, REDWAN E M . Hib vaccines: past, present, and future perspectives. Journal of Immunology Research, 2016,2016:7203587. |
[71] | CILLÓNIZ C, AMARO R, TORRES A . Pneumococcal vaccination. Current Opinion in Infectious Diseases, 2016,29(2):187-196. |
[72] | HARRISON L H, MOHAN N, KIRKPATRICK P . Meningococcal group A, C, Y and W-135 conjugate vaccine. Nature Reviews Drug Discovery, 2010,9(6):429-430. |
[73] | 刘秀丽, 郝永清, 郭宇 . 奶牛乳房炎金黄色葡萄球菌荚膜多糖研究概况. 动物医学进展, 2011,32(3):117-120. |
LIU X L, HAO Y Q, GUO Y . Progress on capsular polysaccharides of staphylococcus aureus isolated from cow mastitis. Progress in Veterinary Medicine, 2011,32(3):117-120. (in Chinese) | |
[74] | 赫娜, 王长法, 杨宏军, 何洪彬, 杨少华, 王立群, 高运东, 仲跻峰 . 牛源金黄色葡萄球菌突变株的筛选、鉴定及其免疫原性的研究. 中国农业科学, 2010,43(10):2174-2181. |
HE N, WANG C F, YANG H J, HE H B, YANG S H, WANG L Q, GAO Y D, ZHONG J F . Screening an attenuated strain and immunogenicity in mice of a bovine mastitis staphylococcus aureus mutant. Scientia Agricultura Sinica, 2010,43(10):2174-2181. (in Chinese) | |
[75] | FATTOM A, FULLER S, PROPST M, WINSTON S, MUENZ L, HE D, NASO R, HORWITH G . Safety and immunogenicity of a booster dose of Staphylococcus aureus types 5 and 8 capsular polysaccharide conjugate vaccine (StaphVAX) in hemodialysis patients. Vaccine, 2004,23(5):656-663. |
[76] | 张哲 . 奶牛乳房炎金黄色葡萄球菌荚膜多糖蛋白结合疫苗的研究[D]. 甘肃农业大学, 2017. |
ZHANG Z . Study on protein conjugate polysaccharide vaccine of Staphylococcus aureus for bovine mastitis[D]. Gansu Agricultural University, 2017. ( in Chinese) | |
[77] | LATTAR S M, NOTO LLANA M, DENOËL P, GERMAIN S, BUZZOLA F R, LEE J C, SORDELLI D O . Protein antigens increase the protective efficacy of a capsule-based vaccine against Staphylococcus aureus in a rat model of osteomyelitis. Infection and Immunity, 2014,82(1):83-91. |
[78] | CRESS B F, ENGLAENDER J A, HE W, KASPER D, LINHARDT R J, KOFFAS M A . Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules. Fems Microbiology Reviews, 2014,38(4):660-697. |
[79] | PRUIMBOOM I M, RIMLER R B, ACKERMANN M R . Enhanced adhesion of Pasteurella multocida to cultured turkey peripheral blood monocytes. Infection and Immunity, 1999,67(3):1292-1296. |
[1] | 金梦娇,刘博,王抗抗,张广忠,钱万强,万方浩. 薇甘菊光能利用及叶绿素合成在不同光照强度下的响应[J]. 中国农业科学, 2022, 55(12): 2347-2359. |
[2] | 崔一芳,郑敏,丁双阳,朱奎. 蜡样芽孢杆菌致吐毒素的毒性作用与生物合成研究进展[J]. 中国农业科学, 2021, 54(12): 2666-2674. |
[3] | 秦秋红,何旭江,江武军,王子龙,曾志将. 东方蜜蜂幼虫封盖信息素含量及生物合成通路[J]. 中国农业科学, 2021, 54(11): 2464-2475. |
[4] | 张稳,孟淑君,王琪月,万炯,马拴红,林源,丁冬,汤继华. 玉米pTAC2影响苗期叶片叶绿素合成的转录组分析[J]. 中国农业科学, 2020, 53(5): 874-889. |
[5] | 余爱丽,赵晋锋,成锴,王振华,张鹏,刘鑫,田岗,赵太存,王玉文. 谷子萌发吸水期关键代谢途径的筛选与分析[J]. 中国农业科学, 2020, 53(15): 3005-3019. |
[6] | 张彬,李萌,刘晶,王俊杰,侯思宇,李红英,韩渊怀. 绿小米和白小米谷子籽粒叶绿素合成途径结构基因的表达分析[J]. 中国农业科学, 2020, 53(12): 2331-2339. |
[7] | 李小冬,尚以顺,李世歌,陈光吉,裴成江,孙方,熊先勤. 异源表达芥菜BjMATE增强紫花苜蓿耐酸铝胁迫的机理[J]. 中国农业科学, 2020, 53(1): 18-28. |
[8] | 富丽霞,马涛,刁其玉,成述儒,宋雅喆,孙卓琳. 肉羊精料可代谢蛋白质预测模型的建立[J]. 中国农业科学, 2019, 52(3): 539-549. |
[9] | 郝宝成, 宋向东, 高艳, 王学红, 刘宇, 李元曦, 梁妍, 陈柯源, 胡毓瑶, 邢小勇, 胡永浩, 梁剑平. 产苦马豆素疯草内生真菌Alternaria Section Undifilum oxytropis的诱变筛选[J]. 中国农业科学, 2019, 52(15): 2716-2728. |
[10] | 杜吉革,薛麒,朱真,李启红,印春生,姚文生,康凯,陈小云. 无毒性产气荚膜梭菌ε毒素突变体的表达及免疫保护力评价[J]. 中国农业科学, 2018, 51(11): 2206-2215. |
[11] | 戴思兰,洪艳. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种[J]. 中国农业科学, 2016, 49(3): 529-542. |
[12] | 何旭江,江武军,颜伟玉,曾志将. 蜜蜂蜂王与雄蜂幼虫饥饿信息素鉴定及其生物合成通路[J]. 中国农业科学, 2016, 49(23): 4646-4655. |
[13] | 曾幼玲,杨瑞瑞. 植物miRNA的生物学特性及在环境胁迫中的作用[J]. 中国农业科学, 2016, 49(19): 3671-3682. |
[14] | 郭光艳,柏峰,刘伟,秘彩莉. 转录因子对木质素生物合成调控的研究进展[J]. 中国农业科学, 2015, 48(7): 1277-1287. |
[15] | 孙磊1, 朱保庆2, 孙晓荣1, 许晓青3, 王晓玥1, 张国军1, 闫爱玲1, 徐海英1. ‘亚历山大’葡萄果实单萜生物合成相关基因转录及萜类物质积累规律[J]. 中国农业科学, 2014, 47(7): 1379-1386. |
|