中国农业科学 ›› 2021, Vol. 54 ›› Issue (12): 2666-2674.doi: 10.3864/j.issn.0578-1752.2021.12.016
收稿日期:
2020-05-06
接受日期:
2020-09-27
出版日期:
2021-06-16
发布日期:
2021-06-24
通讯作者:
朱奎
作者简介:
崔一芳,Tel:010-51503195;E-mail:基金资助:
CUI YiFang1(),ZHENG Min2,DING ShuangYang2,ZHU Kui2()
Received:
2020-05-06
Accepted:
2020-09-27
Online:
2021-06-16
Published:
2021-06-24
Contact:
Kui ZHU
摘要:
蜡样芽孢杆菌是一类兼性厌氧的革兰氏阳性杆菌,可以产生芽孢抵抗不良环境,并广泛存在于土壤、水、空气和多种食物中。致病性蜡样芽孢杆菌是常见的食源性条件致病菌之一,其引发的食物中毒主要是由其产生的毒素导致的。致吐毒素cereulide是致病性蜡样芽孢杆菌产生的重要毒素之一,是一种小分子亲脂性十二环肽,结构性质十分稳定。Cereulide能够引起恶心、呕吐等轻微的食物中毒症状,也可导致如肝性脑病、急性肝脏衰竭等严重致死的疾病。当前对于cereulide的毒性作用机制研究局限于其刺激传入迷走神经引起呕吐症状,以及作为钾离子载体,诱导线粒体膜电位丧失,并最终导致细胞死亡,而对于其导致的严重肝脏和脑部病变的毒性作用机制研究仍十分不足。Cereulide是由cereulide合成酶基因簇(ces)编码,非核糖体肽合成酶(nonribosomal peptide-synthetase, NRPS)系统控制合成的。Cereulide由两个羟基酸和两个氨基酸残基[-D-HIC-D-Ala-L-HIV-L-Val-]经3次迭代组成三聚体缩酚酞,其结构特殊并有很强的代表性,但因NRPS合成系统的灵活性会产生许多变体,因此cereulide的毒性与其生物合成过程息息相关。文章在现有文献报道和研究数据的基础上,总结并提出了cereulide的生物合成机理:首先,cereulide合成基因簇的CesA和CesB结构域分别识别D-α-酮羧酸、L-丙氨酸、L-α-酮异戊酸和L-缬氨酸,通过共价结合形成cereulide的主要合成单元二肽;其次,依照上述过程重复合成四肽;再通过重复反应合成第二个四肽,两个四肽通过酯化形成八肽;再次重复上述反应,形成三元络合的产物肽;最后,由于ces-NRPS的硫酯酶结构域活性中心表面结构阻止外部水分子进入,并诱导内部亲核攻击反应,最终释放出环状cereulide。目前,由产cereulide的蜡样芽孢杆菌引起的食物中毒风险被低估。并且,本团队前期研究发现部分芽孢杆菌微生态制剂中混有产cereulide的蜡样芽孢杆菌菌株。因此,产cereulide蜡样芽孢杆菌的存在对食品安全和公共健康均构成了潜在风险。文章综述了cereulide的毒性作用及机制,为进一步研发cereulide防控措施提供科学依据;总结并提出了cereulide的生物合成机理,强调了催化酮酸形成酯的酮还原酶域(KR),及形成重复单元和环肽的硫酯酶域(TE)在其合成中的重要作用,为阐明类似结构的非核糖体肽合成提供新的思路。
崔一芳,郑敏,丁双阳,朱奎. 蜡样芽孢杆菌致吐毒素的毒性作用与生物合成研究进展[J]. 中国农业科学, 2021, 54(12): 2666-2674.
CUI YiFang,ZHENG Min,DING ShuangYang,ZHU Kui. Advances of Biosynthesis and Toxicity of Cereulide Produced by Emetic Bacillus cereus[J]. Scientia Agricultura Sinica, 2021, 54(12): 2666-2674.
[1] | EHLING-SCHULZ M, LERECLUS D, KOEHLER T M. The Bacillus cereus group: Bacillus species with pathogenic potential. Microbiology Spectrum, 2019,7(3): 10.1128/microbiolspec.GPP3-0032-2018. 2018. |
[2] |
CEUPPENS S, BOON N, UYTTENDAELE M. Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiology Ecology, 2013,84(3):433-450.
doi: 10.1111/femsec.2013.84.issue-3 |
[3] | MAHLER H, PASI A, KRAMER J M, SCHULTE P, SCOGING A C, BÄR W, KRAHENBUHL S. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. The New England Journal of Medicine, 1997,336(16):1142-1148. |
[4] | ICHIKAWA K, GAKUMAZAWA M, INABA A, SHIGA K, TAKESHITA S, MORI M, KIKUCHI N. Acute encephalopathy of Bacillus cereus mimicking Reye syndrome. Brain & Development, 2010,32(8):688-690. |
[5] | RAJKOVIC A. Microbial toxins and low level of foodborne exposure. Trends in Food Science & Technology, 2014,38(2):149-157. |
[6] |
BENNETT S D, WALSH K A, GOULD L H. Foodborne disease outbreaks caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus-United States, 1998-2008. Clinical Infectious Diseases, 2013,57(3):425-433.
doi: 10.1093/cid/cit244 |
[7] | GLASSET B, HERBIN S, GUILLIER L, CADEL-SIX S, VIGNAUD M L, GROUT J, PAIRAUD S, MICHEL V, HENNEKINNE J A, RAMARAO N, BRISABOIS A. Bacillus cereus-induced food-borne outbreaks in France, 2007 to 2014: epidemiology and genetic characterisation. EURO Surveillance, 2016,21(48):30413. |
[8] | MESSELHÄUSSER U, FRENZEL E, BLÖCHINGER C, ZUCKER R, KÄMPF P, EHLING-SCHULZ M. Emetic Bacillus cereus are more volatile than thought: recent foodborne outbreaks and prevalence studies in Bavaria (2007-2013). BioMed Research International, 2014,2014:465603. |
[9] | ROUZEAU-SZYNALSKI K, STOLLEWERK K, MESSELHÄUSSER U, EHLING_SCHULZ M. Why be serious about emetic Bacillus cereus: cereulide production and industrial challenges. Food Microbiology, 2020, 10.1016/j.fm.2019.103279. |
[10] |
TER BEEK A, BRUL S. To kill or not to kill Bacilli: opportunities for food biotechnology. Current Opinion in Biotechnology, 2010,21(2):168-174.
doi: 10.1016/j.copbio.2010.03.014 |
[11] |
GÁLVEZ A, ABRIOUEL H, LÓPEZ R L, BEN OMAR N. Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology, 2007,120(1-2):51-70.
doi: 10.1016/j.ijfoodmicro.2007.06.001 |
[12] |
IN 'T VELD P H, VAN DER LAAK L F J, VAN ZON M, BIESTA-PETERS E G. Elaboration and validation of the method for the quantification of the emetic toxin of Bacillus cereus as described in EN-ISO 18465-Microbiology of the food chain - Quantitative determination of emetic toxin (cereulide) using LC-MS/MS. International Journal of Food Microbiology, 2019,288:91-96.
doi: 10.1016/j.ijfoodmicro.2018.03.021 |
[13] |
ELSHAGHABEE F M F, ROKANA N, GULHANE R D, SHARMA C, PANWAR H. Bacillus as potential probiotics: status, concerns, and future perspectives. Frontiers in Microbiology, 2017,8:1490.
doi: 10.3389/fmicb.2017.01490 |
[14] | FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO). Probiotics in animal nutrition production, impact and regulation. FAO Animal Production and Health Paper 2016, No. 179, http://www.fao.org/3/a-i5933e.pdf. |
[15] | 中华人民共和国农业农村部. 农业部公告第2045号(饲料添加剂品种目录2013), 2013. |
MINISTRY OF AGRICULTURE AND RURAL AFFIRS OF THE PEOPLE’S REPUBLIC OF CHINA. Ministry of Agticulture Announcement No. 2045 (Category of Feed Additives 2013), 2013. (in Chinese) | |
[16] |
DORON S, SNYDMAN D R. Risk and safety of probiotics. Clinical Infectious Diseases, 2015,60(Suppl. 2):S129-S134.
doi: 10.1093/cid/civ085 |
[17] | ZHU K, HOLZEL C S, CUI Y F, MAYER R, WANG Y, DIETRICH R, DIDIER A, BASSITTA R, MARTLBAUER E, DING S Y. Probiotic Bacillus cereus strains, a potential risk for public health in China. Frontiers in Microbiology, 2016,7:718. |
[18] |
CUI Y F, WANG S L, DING S Y, SHEN J Z, ZHU K. Toxins and mobile antimicrobial resistance genes in Bacillus probiotics constitute a potential risk for One Health. Journal of Hazardous Materials, 2020,382:121266.
doi: 10.1016/j.jhazmat.2019.121266 |
[19] | CUI Y F, MÄRTLBAUER E, DIETRICH R, LUO H L, DING S Y, ZHU K. Multifaceted toxin profile, an approach toward a better understanding of probiotic Bacillus cereus. Critical Reviews in Toxicology, 2019,49(4):342-356. |
[20] |
MAGARVEY N A, EHLING-SCHULZ M, WALSH C T. Characterization of the cereulide NRPS alpha-hydroxy acid specifying modules: activation of alpha-keto acids and chiral reduction on the assembly line. Journal of American Chemical Society, 2006,128(33):10698-10699.
doi: 10.1021/ja0640187 |
[21] |
MARXEN S, STARK T D, RUTSCHLE A, LÜCKING G, FRENZEL E, SCHERER S, EHLING-SCHULZ M, HOFMANN T. Depsipeptide intermediates interrogate proposed biosynthesis of cereulide, the emetic toxin of Bacillus cereus. Scientific Reports, 2015,5:10637.
doi: 10.1038/srep10637 |
[22] |
TEPLOVA V V, MIKKOLA R, TONSHIN A A, SARIS N E, SALKINOJA-SALONEN M S. The higher toxicity of cereulide relative to valinomycin is due to its higher affinity for potassium at physiological plasma concentration. Toxicology and Applied Pharmacology, 2006,210(1-2):39-46.
doi: 10.1016/j.taap.2005.06.012 |
[23] | GRANUM P E. Spotlight on Bacillus cereus and its food poisoning toxins. FEMS Microbiology Letters, 2017,364(10):fnx071. |
[24] |
STENFORS ARNESEN L P, FAGERLUND A, GRANUM P E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiology Reviews, 2008,32(4):579-606.
doi: 10.1111/j.1574-6976.2008.00112.x |
[25] | KRANZLER M, STOLLEWERK K, ROUZEAU-SZYNALSKI K, BLAYO L, SULYOK M, EHLING-SCHULZ M. Temperature exerts control of Bacillus cereus emetic toxin production on post-transcriptional levels. Frontiers in Microbiology, 2016,7:1640. |
[26] |
RAJKOVIC A, UYTTENDAELE M, VERMEULEN A, ANDJELKOVIC M, FITZ-JAMES I, IN 'T VELD P, DENON Q, VÉRHE R, DEBEVERE J. Heat resistance of Bacillus cereus emetic toxin, cereulide. Letters in Applied Microbiology, 2008,46(5):536-541.
doi: 10.1111/j.1472-765X.2008.02350.x |
[27] | CARROLL L M, WIEDMANN M. Cereulide synthetase acquisition and loss events within the evolutionary history of Group III Bacillus cereus sensu lato facilitate the transition between emetic and diarrheal foodborne pathogen. BioRxiv, 2020, doi: https://doi.org/10.1101/2020.05.12.090951. |
[28] |
CARROLL L M, WIEDMANN M, MUKHERJEE M, NICHOLAS D C, MINGLE L A, DUMAS N B, COLE J A, KOVAC J. Characterization of emetic and diarrheal Bacillus cereus strains from a 2016 foodborne outbreak using whole-genome sequencing: addressing the microbiological, epidemiological, and bioinformatic challenges. Frontiers in Microbiology, 2019,10:144.
doi: 10.3389/fmicb.2019.00144 |
[29] |
RAMARAO N, TRAN S L, MARIN M, VIDIC J. Advanced methods for detection of Bacillus cereus and its pathogenic factors. Sensors, 2020,20(9):2667.
doi: 10.3390/s20092667 |
[30] | AGATA N, OHTA M. MORI M, ISOBE M. A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiology Letters, 1995,129(1):17-19. |
[31] | SHINAGAWA K, KONUMA H, SEKITA H, SUGII S. Emesis of rhesus monkeys induced by intragastric administration with the HEp-2 vacuolation factor (cereulide) produced by Bacillus cereus. FEMS Microbiology Letters, 1995,130(1):87-90. |
[32] |
DELBRASSINNE L, ANDJELKOVIC M, DIERICK K, DENAYER S, MAHILLON J, VAN LOCO J. Prevalence and levels of Bacillus cereus emetic toxin in rice dishes randomly collected from restaurants and comparison with the levels measured in a recent foodborne outbreak. Foodborne Pathogens and Disease, 2012,9(9):809-814.
doi: 10.1089/fpd.2012.1168 |
[33] | RØNNING H T, ASP T N, GRANUM P E. Determination and quantification of the emetic toxin cereulide from Bacillus cereus in pasta, rice and cream with liquid chromatography-tandem mass spectrometry. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2015,32(6):911-921. |
[34] |
VANGOITSENHOVEN R, RONDAS D, CRÈVECOEUR I, D'HERTOG W, BAATSEN P, MASINI M, ANDJELKOVI M, VAN L OCO J, MATTHYS C, MATHIEU C, OVERBERGH L, VAN DER SCHUEREN B. Foodborne cereulide causes beta-cell dysfunction and apoptosis. PLoS ONE, 2014,9(8):e104866.
doi: 10.1371/journal.pone.0104866 |
[35] |
PAANANEN A, MIKKOLA R, SARENEVA T, MATIKAINEN S, HESS M, ANDERSSON M, JULKUNEN I, SALKINOJA-SALONEN M S, TIMONEN T. Inhibition of human natural killer cell activity by cereulide, an emetic toxin from Bacillus cereus. Clinical and Experimental Immunology, 2002,129(3):420-428.
doi: 10.1046/j.1365-2249.2002.01898.x |
[36] |
DECLEER M, JOVANOVIC J, VAKULA A, UDOVICKI B, AGOUA R E K, MADDER A, DE SAEGER S, RAJKOVIC A. Oxygen consumption rate analysis of mitochondrial dysfunction caused by Bacillus cereus cereulide in Caco-2 and HepG2 cells. Toxins, 2018,10(7):266.
doi: 10.3390/toxins10070266 |
[37] |
JÄÄSKELÄINEN E L, TEPLOVA V, ANDERSSON M A, ANDERSSON L C, TAMMELA P, ANDERSSON M C, PIRHONEN T I, SARIS N E, VUORELA P, SALKINOJA-SALONEN M S. In vitro assay for human toxicity of cereulide, the emetic mitochondrial toxin produced by food poisoning Bacillus cereus. Toxicology in Vitro, 2003,17(5-6):737-744.
doi: 10.1016/S0887-2333(03)00096-1 |
[38] |
VANGOITSENHOVEN R, MASINI M, OVERBERGH L, VAN LOCO J, MATHIEU C, VAN DER SCHUEREN B. Cereulide food toxin, beta cell function and diabetes: facts and hypotheses. Diabetes Research and Clinical Practice, 2015,109(1):1-5.
doi: 10.1016/j.diabres.2015.04.029 |
[39] |
CHOI W, NAMKUNG J, HWANG I, KIM H, LIM A, PARK H J, LEE H W, HAN K H, PARK S, JEONG J S, BANG G, KIM Y H, YADAV V K, KARSENTY G, JU Y S, CHOI C, SUH J M, PARK J Y, PARK S, KIM H. Serotonin signals through a gut-liver axis to regulate hepatic steatosis. Nature Communications, 2018,9(1):4824.
doi: 10.1038/s41467-018-07287-7 |
[40] |
CUI Y F, LIU Y, LIU X Y, XIA X, DING S Y, ZHU K. Evaluation of the toxicity and toxicokinetics of cereulide from an emetic Bacillus cereus strain of milk origin. Toxins, 2016,8(6):156.
doi: 10.3390/toxins8060156 |
[41] |
BOZHÜYÜK K A, MICKLEFIELD J, WILKINSON B. Engineering enzymatic assembly lines to produce new antibiotics. Current Opinion in Microbiology, 2019,51:88-96.
doi: 10.1016/j.mib.2019.10.007 |
[42] |
BROWN A S, CALCOTT M J, OWEN J G, ACKERLEY D F. Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. Natural Product Reports, 2018,35(11):1210-1228.
doi: 10.1039/C8NP00036K |
[43] | SÜSSMUTH R D, MAINZ A. Nonribosomal peptide synthesis- principles and prospects. Angewandte Chemie-International Edition, 2017,56(14):3770-3821. |
[44] |
EHLING-SCHULZ M, VUKOV N, SCHULZ A, SHAHEEN R, ANDERSSON M, MÄRTLBAUER E, SCHERER S. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Applied and Environmental Microbiology, 2005,71(1):105-113.
doi: 10.1128/AEM.71.1.105-113.2005 |
[45] |
EHLING-SCHULZ M, FRICKER M, GRALLERT H, RIECK P, WAGNER M, SCHERER S. Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiology, 2006,6:20.
doi: 10.1186/1471-2180-6-20 |
[46] |
DOMMEL M K, LÜCKING G, SCHERER S, EHLING-SCHULZ M. Transcriptional kinetic analyses of cereulide synthetase genes with respect to growth, sporulation and emetic toxin production in Bacillus cereus. Food Microbiology, 2011,28(2):284-290.
doi: 10.1016/j.fm.2010.07.001 |
[47] | LÜCKING G, FRENZEL E, RÜTSCHLE A, MARXEN S, STARK T D, HOFMANN T, SCHERER S, EHLING-SCHULZ M. Ces locus embedded proteins control the non-ribosomal synthesis of the cereulide toxin in emetic Bacillus cereus on multiple levels. Frontiers in Microbiology, 2015,6:1101. |
[48] | EHLING-SCHULZ M, FRENZEL E, GOHAR M. Food-bacteria interplay: pathometabolism of emetic Bacillus cereus. Frontiers in Microbiology, 2015,6:704. |
[49] |
LÜCKING G, DOMMEL M K, SCHERER S, FOUETA, EHLING-SCHULZ M. Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Microbiology, 2009,155(Pt 3):922-931.
doi: 10.1099/mic.0.024125-0 |
[50] |
GUÉRIN A, RØNNING H T, DARGAIGNARATZ C, CLAVEL T, BROUSSOLLE V, MAHILLON J, GRANUM P E, NGUYEN-THE C. Cereulide production by Bacillus weihenstrphanensis strains during growth at different pH values and temperatures. Food Microbiology, 2017,65:130-135.
doi: 10.1016/j.fm.2017.02.006 |
[51] |
GENG P L, HU Y M, ZHOU G P, YUAN Z M, HU X M. Characterization of three autolysins with activity against cereulide- producing Bacillus isolates in food matrices. International Journal of Food Microbiology, 2017,241:291-297.
doi: 10.1016/j.ijfoodmicro.2016.10.030 |
[52] |
AONZO D A, MAGARVEY N A, SCHMEING T M. Characterization of cereulide synthetase, a toxin-producing macromolecular machine. PLoS ONE, 2015,10(6):e0128569.
doi: 10.1371/journal.pone.0128569 |
[53] |
LABBY K J, WATSULA S G, GARNEAU-TSODIKOVA S. Interrupted adenylation domains: unique bifunctional enzymes involved in nonribosomal peptide biosynthesis. Natural Product Reports, 2015,32(5):641-653.
doi: 10.1039/C4NP00120F |
[54] |
KUO M M, HAYNES W J, LOUKIN S H, KUNG C, SAIMI Y. Prokaryotic K+ channels: from crystal structures to diversity. FEMS Microbiology Reviews, 2005,29(5):961-985.
doi: 10.1016/j.femsre.2005.03.003 |
[55] |
SANDY M, RUI Z, GALLAGHER J, ZHANG W. Enzymatic synthesis of dilactone scaffold of antimycins. ACS Chemical Biology, 2012,7(12):1956-1961.
doi: 10.1021/cb300416w |
[56] |
SÜSSMUTH R, MÜLLER J, VON DÖHREN H, MOLNRÁR I. Fungal cyclooligomer depsipeptides: from classical biochemistry to combinatorial biosynthesis. Natural Product Reports, 2011,28(1):99-124.
doi: 10.1039/C001463J |
[57] |
GAO L, LIU H, MA Z, HAN J, LU Z, DAI C, LV F, BIE X. Translocation of the thioesterase domain for the redesign of plipastatin synthetase. Scientific Reports, 2016. 6:38467.
doi: 10.1038/srep38467 |
[58] |
SIEBER S A, MARAHIEL M A. Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chemical Reviews, 2005,105(2):715-738.
doi: 10.1021/cr0301191 |
[59] |
BRUNER S D, WEBER T, KOHLI R M, SCHWARZER D, MARAHIEL M A, WALSH C T, STUBBS M T. Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE. Structure, 2002,10(3):301-310.
doi: 10.1016/S0969-2126(02)00716-5 |
[60] |
HUR G H, VICKERY C R, BURKART M D. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Natural Product Reports, 2012,29(10):1074-1098.
doi: 10.1039/c2np20025b |
[1] | 王程利,尹志远,聂嘉俊,林永辉,黄丽丽. 苹果黑腐皮壳菌CAP超家族蛋白基因鉴定及毒性功能分析[J]. 中国农业科学, 2021, 54(16): 3440-3450. |
[2] | 秦秋红,何旭江,江武军,王子龙,曾志将. 东方蜜蜂幼虫封盖信息素含量及生物合成通路[J]. 中国农业科学, 2021, 54(11): 2464-2475. |
[3] | 关丽君,薛云,丁文文,赵战勤. 多杀性巴氏杆菌荚膜的生物合成及其调控机制研究进展[J]. 中国农业科学, 2020, 53(3): 658-668. |
[4] | 杨君,楚品品,宋帅,蔡汝健,杨冬霞,卞志标,勾红潮,李艳,蒋智勇,李春玲,闫鹤. 副猪嗜血杆菌lpxM基因缺失株构建及生物学特性分析[J]. 中国农业科学, 2020, 53(16): 3394-3403. |
[5] | 余爱丽,赵晋锋,成锴,王振华,张鹏,刘鑫,田岗,赵太存,王玉文. 谷子萌发吸水期关键代谢途径的筛选与分析[J]. 中国农业科学, 2020, 53(15): 3005-3019. |
[6] | 张彬,李萌,刘晶,王俊杰,侯思宇,李红英,韩渊怀. 绿小米和白小米谷子籽粒叶绿素合成途径结构基因的表达分析[J]. 中国农业科学, 2020, 53(12): 2331-2339. |
[7] | 富丽霞,马涛,刁其玉,成述儒,宋雅喆,孙卓琳. 肉羊精料可代谢蛋白质预测模型的建立[J]. 中国农业科学, 2019, 52(3): 539-549. |
[8] | 郝宝成, 宋向东, 高艳, 王学红, 刘宇, 李元曦, 梁妍, 陈柯源, 胡毓瑶, 邢小勇, 胡永浩, 梁剑平. 产苦马豆素疯草内生真菌Alternaria Section Undifilum oxytropis的诱变筛选[J]. 中国农业科学, 2019, 52(15): 2716-2728. |
[9] | 何俊,田昕竹,王学东,刘彬,李宁,郑涵,孟楠,陈世宝. 基于根微形态测定土壤Zn对大麦的毒性阈值及其预测模型[J]. 中国农业科学, 2017, 50(7): 1263-1270. |
[10] | 戴思兰,洪艳. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种[J]. 中国农业科学, 2016, 49(3): 529-542. |
[11] | 何旭江,江武军,颜伟玉,曾志将. 蜜蜂蜂王与雄蜂幼虫饥饿信息素鉴定及其生物合成通路[J]. 中国农业科学, 2016, 49(23): 4646-4655. |
[12] | 曾幼玲,杨瑞瑞. 植物miRNA的生物学特性及在环境胁迫中的作用[J]. 中国农业科学, 2016, 49(19): 3671-3682. |
[13] | 郭光艳,柏峰,刘伟,秘彩莉. 转录因子对木质素生物合成调控的研究进展[J]. 中国农业科学, 2015, 48(7): 1277-1287. |
[14] | 李佳楠,杨薇,彭娜,陈禅友. 菜豆毒性分析及毒性预测模型建立[J]. 中国农业科学, 2015, 48(4): 727-734. |
[15] | 孙磊1, 朱保庆2, 孙晓荣1, 许晓青3, 王晓玥1, 张国军1, 闫爱玲1, 徐海英1. ‘亚历山大’葡萄果实单萜生物合成相关基因转录及萜类物质积累规律[J]. 中国农业科学, 2014, 47(7): 1379-1386. |
|