[1]Braun D M, Walker J C. Plant transmembrane receptors: new pieces in the signaling puzzle. Trends in Biochemical Sciences, 1996, 21(2): 70-73.
[2]Mahmut T, Lotze M T, Holton N. Receptor-mediated signalling in plants: Molecular patterns and programmes. Journal of Experimental Botany, 2009, 13(60): 3645-3654.
[3]He X J, Zhang Z G, Yan D Q, Zhang J S, Chen S Y. A salt-responsive receptor-like kinase gene regulated by the ethylene signaling pathway encodes a plasma membrane serine/threonine kinase. Theoretical and Applied Genetics, 2004, 109(2): 377-383.
[4]马媛媛, 甘 睿, 王宁宁. 植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能. 植物生理与分子生物学学报, 2005, 31(4): 331-339.
Ma Y Y, Gan R, Wang N N. Biological functions of leucine-rich repeat class of receptor-like protein kinases in plants. Journal of Plant Physiology and Molecular Biology, 2005, 31(4): 331-339. (in Chinese)
[5]Dievart A, Clark S E. LRR-containing receptors regulating plant development and defense. Development, 2004, 131: 251-261.
[6]Chen F, Gao M J, Miao Y S, Yuan Y X, Wang M Y, Li Q, Mao B Z, Jiang, L W, He Z H. Plasma membrane localization and potential endocytosis of constitutively expressed XA21 proteins in transgenic rice. Molecular Plant, 2010, 3(5): 917-926.
[7]Wang X L, Chory J. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science, 2006, 313(5790): 1118-1122.
[8]Torii K U, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier R F, Komeda Y. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. The Pant Cell, 1996, 8(4): 735-746.
[9]Stein J C, Nasrallah J B. A plant receptor-like gene, the S-locus receptor kinase of Brassica oleracea L., encodes a functional serine/threonine kinase. Plant Physiology, 1993, 101(3): 1103-1106.
[10]Lally D, Ingmire P, Tong H Y, He Z H. Antisense expression of a cell wall–associated protein kinase, WAK4, inhibits cell elongation and alters morphology. The Plant Cell, 2001, 13(6): 1317-1331.
[11]Jung H W, Hwang B K. The leucine-rich repeat (LRR) protein, CaLRR1, interacts with the hypersensitive induced reaction (HIR) protein, CaHIR1, and suppresses cell death induced by the CaHIR1 protein. Molecular Plant Pathology, 2007, 8(4): 503-514.
[12]Braun D M, Stone J M, Walker J C. Interaction of the maize and Arabidopsis kinase interaction domains with a subset of receptor-like protein kinases, implications for transmembrane signaling in plants. The Plant Journal, 1997, 12(1): 83-95.
[13]Jinn T L, Stone J M, Walker J C. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Development, 2000, 14: 108-117.
[14]Salchert K, Bhalerao R, Koncz-Kalman Z, Koncz C. Control of cell elongation and stress responses by steroid hormones and carbon catabolic repression in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353(1374): 1517-1520.
[15]Wang Z Y, Seto H, S Fujioka S, Yoshida S, Chory J. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 2001, 410: 380-383.
[16]Clouse S D, Langford M, McMorris T C. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiology, 1996, 111(3): 671-678.
[17]Schumacher K, Chory J. Brassinosteroid signal transduction: still casting the actors. Current Opinion in Plant Biology, 2000, 3: 79-84.
[18]Butler J E, Kadonaga J T. The RNA polymerse Ⅱ core promoter: a key component in the regulation of gene expression. Gene and Development, 2002, 16(20): 2583-2592.
[19]Park H C, Kim M L, Kang Y H, Jeon J M, Yoo J H, Kim M C, Park C Y, Jeong J C, Moon B C, Lee J H, Yoon H W, Lee S H, Chung W S, Lim C O, Lee S Y, Hong J C, Cho M J. Pathogen- and NaCl-induced
expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiology, 2004, 135(4): 2150-2161.
[20]Li J M, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 1997, 90: 929-938.
[21]Kinoshita T, Cano-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, Chory J. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature, 2005, 433: 167-171.
[22]He Z H, Wang Z Y, Li J M, Zhu Q, Lamb C, Ronald P, Chory J. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science, 2000, 288(5475): 2360-2363.
[23]Wu F H, Shen S C, Lee L Y, Lee S H, Chan M T, Lin C S. Tape-Arabidopsis Sandwich-a simpler Arabidopsis protoplast isolation method. Plant Methods, 2009, 5: 1-10.
[24]苟春宝, 王 勇, 喻 川, 陈 放, 魏 炜. 麻疯树MIPS基因启动子的分离及在烟草原生质体中瞬时表达活性分析. 植物生理学通讯, 2010, 46(7): 724-730.
Gou C B, Wang Y, Yu C, Chen F, Wei W. Isolation of MIPS gene promoter from Jatropha curcas L. and activity analysis of transient expression in tobacco protoplast. Plant Physiology Journal, 2010, 46(7): 724-730. (in Chinese)
[25]Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants fusion marker in higher plants. The EMBO Journal, 1987, 6(13): 3901-3907.
[26]胡时开, 陶红剑, 钱 前, 郭龙彪. 水稻耐盐性的遗传和分子育种的研究进展. 分子植物育种, 2010, 8(4): 629-640.
Hu S K, Tao H J, Qian Q, Guo L B. Progresses on genetics and molecular breeding for salt-tolerance in rice. Molecular Plant Breeding, 2010, 8(4): 629-640. (in Chinese)
[27]Liu J P, Ishitani M, Halfter U, Kim C S, Zhu J K. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the USA, 2000, 97(7): 3735-3740.
[28]Zhu J K. Cell signaling under salt, water and cold stresses. Current Opinion in Plant Biology, 2001, 4: 401-406.
[29]Zhu J K. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 2002, 53: 247-273. |