中国农业科学 ›› 2019, Vol. 52 ›› Issue (23): 4364-4373.doi: 10.3864/j.issn.0578-1752.2019.23.016
卞书迅,韩晓蕾,袁高鹏,张利义,田义,张彩霞(),丛佩华()
收稿日期:
2019-07-31
接受日期:
2019-09-19
出版日期:
2019-12-01
发布日期:
2019-12-01
通讯作者:
张彩霞,丛佩华
作者简介:
卞书迅,E-mail:bb18236767941@163.com|韩晓蕾,E-mail:hanxiaolei@caas.cn
基金资助:
BIAN ShuXun,HAN XiaoLei,YUAN GaoPeng,ZHANG LiYi,TIAN Yi,ZHANG CaiXia(),CONG PeiHua()
Received:
2019-07-31
Accepted:
2019-09-19
Online:
2019-12-01
Published:
2019-12-01
Contact:
CaiXia ZHANG,PeiHua CONG
摘要:
【目的】U6启动子是CRISPR/Cas9基因组编辑载体系统中驱动sgRNA转录的重要元件,其可能存在物种特异性因子,且长度不同转录活性存在差异。迄今在苹果(Malus×domestica)上对U6启动子尚缺乏研究。因此,筛选出转录活性高且片段大小合适的苹果U6启动子,可以优化苹果CRISPR/Cas9基因编辑体系。【方法】利用软件DNAMAN以及启动子元件在线分析网站PLACE和plant CARE对苹果U6启动子进行比对分析;克隆并构建U6启动子驱动萤火虫荧光素酶基因(Firefly luciferase,LUC)的融合表达载体,利用农杆菌介导的瞬时转化法分别转染苹果愈伤组织和本氏烟草(Nicotiana benthamiana)叶片;通过检测荧光素酶活性对各U6启动子进行转录活性比较。【结果】苹果基因组中共检索到6条U6 snRNA(E-value<3e -40),分别位于第6、7、9、10、15和17号染色体上,取5′端27 bp snRNA及其上游1 500 bp作为候选U6启动子。序列比对结果显示,苹果U6启动子与拟南芥相同,均具有两个保守的元件,包括上游序列元件(Upstream sequence element,USE)和TATA-Like box。瞬时转化后荧光素酶活性检测结果显示,10号染色体上的U6启动子转录活性最高,10号染色体上5′端截短的U6启动子(长度分别为1 500、959、275和116 bp)中275 bp的启动子活性最强。另外,在苹果愈伤组织中,苹果U6启动子的转录活性要显著高于拟南芥U6启动子。【结论】从苹果基因组克隆6条U6启动子,并筛选出一条转录活性高且片段长度较短的U6启动子。
卞书迅,韩晓蕾,袁高鹏,张利义,田义,张彩霞,丛佩华. 苹果U6启动子的克隆及功能分析[J]. 中国农业科学, 2019, 52(23): 4364-4373.
BIAN ShuXun,HAN XiaoLei,YUAN GaoPeng,ZHANG LiYi,TIAN Yi,ZHANG CaiXia,CONG PeiHua. Cloning and Functional Analysis of U6 Promoter in Apple[J]. Scientia Agricultura Sinica, 2019, 52(23): 4364-4373.
表1
本研究使用的引物序列"
引物名称 Prime name | 上游引物 Forward sequence (5′-3′) | 下游引物 Reverse sequence (5′-3′) |
---|---|---|
MdU6-6P | F:ggtaccTTTGGAGTTGAAGGATTT | R;aagcttAATTTTATCGGATGTCCC |
MdU6-7P | F:ggtaccCCCCCGTTTGGATGACCCA | R:aagcttAATTTTATCGGATGTCCC |
MdU6-9P | F:aagcttATGCTTCTCCCATGGAAAT | R:ggatccAATTTTATCGGATGTCCC |
MdU6-10P | F:ggtaccTGGTGACATTGAGGTTCT | R:aagcttAATTTTATCGGATGTCCC |
MdU6-15P | F:ggtaccTTTGGCGTTGCATTAG | R:ggatccAATTTTATCGGATGTCCC |
MdU6-17P | F:ggtaccCTCCCCGGAAATGAC | R:ggatccAATTTTATCGGATGTCCC |
MdU6-10-2P | F:ggtaccTGATATGTGGTGTTTCTAGG | R:aagcttAATTTTATCGGATGTCCC |
MdU6-10-3P | F:ggtaccGGCGAAAGGTTTATGTTC | R:aagcttAATTTTATCGGATGTCCC |
MdU6-10-4P | F:ggtaccCTCCTGACTAGTAAAGAAGG | R:aagcttAATTTTATCGGATGTCCC |
AtU6-1 | F;ggtaccAGAAATCTCAAAATTCCGGCAG | R:aagcttCAATCACTACTTCGTCTCTAACCATAT |
表2
苹果U6 snRNA染色体定位"
基因名称 Gene names | 基因ID Gene ID | 染色体定位 Chromosome:Location |
---|---|---|
MdU6-06 | MD06G1040500 | Chr06: 5202556..5202455 |
MdU6-07 | MD07G1079000 | Chr07: 7617645..7617544 |
MdU6-09 | MD09G1120900 | Chr09: 9346234..9346335 |
MdU6-10 | MD10G1255200 | Ch10: 34716072..34715971 |
MdU6-15 | MD15G1130400 | Chr15: 9427466..9427365 |
MdU6-17 | MD17G1111900 | Chr17: 9588121..9588222 |
[1] |
CHEN K L, GAO C X . Targeted genome modification technologies and their applications in crop improvements. Plant Cell Report, 2014,33(4):575-583.
doi: 10.1007/s00299-013-1539-6 pmid: 24277082 |
[2] |
RAN F A, HSU P D, WRIGHT J, AGARWALA V, SCOTT D A, ZHANG F . Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013,8(11):2281-2308.
doi: 10.1038/nprot.2013.143 |
[3] |
LI J F, NORVILLE J E, AACH J, MCCORMACK M, ZHANG D D, BUSH J, CHURCH G M, SHEEN J . Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 2013,31(8):688-691.
doi: 10.1038/nbt.2654 pmid: 23929339 |
[4] |
LIU X J, XIE C X, SI H J, YANG J X . CRISPR/Cas9-mediated genome editing in plants. Methods, 2017,12(1):94-102.
doi: 10.1111/pbi.13315 pmid: 31821678 |
[5] |
XING H L, DONG L, WANG Z P, ZHANG H Y, HAN C Y, LIU B, WANG X C, CHEN Q J . A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology, 2014,14(1):327.
doi: 10.1186/s12870-014-0327-y |
[6] |
DAS G, HENNING D, REDD R . Structure, organization, and transcription of Drosophila U6 small nuclear RNA genes. Biological Chemistry, 1987,262(25):1187-1193.
pmid: 3027083 |
[7] |
TAZI J, FORNE T, JEANTEUR P, CATHALA G, BRUNEL C . Mammalian U6 small nuclear RNA undergoes 3' end modifications within the spliceosome. Molecular & Cellular Biology, 1993,13(3):1641-1650.
doi: 10.1055/s-0039-3400233 pmid: 31842235 |
[8] |
BERGET S M, ROBBERSON B L . U1, U2, and U4/U6 small nuclear ribonucleoproteins are required for in vitro splicing but not polyadenylation. Cell, 1986,46(5):691-696.
doi: 10.1016/0092-8674(86)90344-2 pmid: 2427201 |
[9] |
BLACK D L, STEITZ J A . Pre-mRNA splicing in vitro requires intact U4/U6 small nuclear ribonucleoprotein. Cell, 1986,46(5):697-704.
doi: 10.1016/0092-8674(86)90345-4 pmid: 2427202 |
[10] |
WAIBEL F, FILIPOWICZ W . U6 snRNA genes of Arabidopsis are transcribed by RNA polymerase III but contain the same two upstream promoter elements as RNA polymerase ll-transcribed U-snRNA genes. Nucleic Acids Research, 1990,18(12):3451-3458.
doi: 10.1093/nar/18.12.3451 pmid: 2362802 |
[11] |
BOGENHAGEN D F, SAKONJU S, BROWN D D . A control region in the center of the 5S RNA gene directs specific initiation of transcription: II. The 3' border of the region. Cell, 1980,19(1):27-35.
doi: 10.1016/0092-8674(80)90385-2 pmid: 7357604 |
[12] | GEIDUSCHEK E P, TOCCHINI-VALENTINI G P . Transcription by RNA polymerase III. Annual Review of Biochemistry, 1988,57(59):873-914. |
[13] |
MALI P, YANG L H, ESVELT K M, AACH J, GUELL M, DICARLO J E, NORVILLE J E, CHURCH J M . RNA-guided human genome engineering via Cas9. Science, 2013,339(6121):823-826.
doi: 10.1126/science.1232033 |
[14] |
MA H M, WU Y G, DANG Y, CHOI J G, ZHANG J L, WU H Q . Pol III promoters to express small RNAs: Delineation of transcription initiation. Molecular Therapy-Nucleic Acids, 2014,3(5):e161.
doi: 10.1038/mtna.2014.12 pmid: 24803291 |
[15] |
PAUL C P, GOOD P D, WINER I, ENGELKE D R . Effective expression of small interfering RNA in human cells. Nature Biotechnology, 2002,20(5):505-508.
doi: 10.1038/nbt0502-505 pmid: 11981566 |
[16] |
KWAK Y D, KOIKE H, SUGAYA K . RNA interference with small hairpin RNAs transcribed from a human U6 promoter-driven DNA vector. Journal of Pharmacological Sciences, 2003,93(2):214-217.
doi: 10.1254/jphs.93.214 pmid: 14578591 |
[17] |
JIANG W Z, ZHOU H B, BI H H, FROMM M, YANG B, WEEKS D P . Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 2013,41(20):e188.
doi: 10.1093/nar/gkt780 pmid: 23999092 |
[18] |
LI X, JIANG D H, YONG K, ZHANG D B . Varied transcriptional efficiencies of multiple Arabidopsis U6 small nuclear RNA genes. Plant Biology, 2007,49(2):222-229.
doi: 10.1093/nar/gkg331 pmid: 12711679 |
[19] |
SHAN Q W, WANG Y P, LI J, ZHANG Y, CHEN K L, LIANG Z, ZHANG K, LIU J X . Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 2013,31(8):686-688.
doi: 10.1038/nbt.2650 pmid: 23929338 |
[20] | 李继洋, 雷建峰, 代培红, 姚瑞, 曲延英, 陈全家, 李月, 刘晓东 . 基于棉花U6 启动子的海岛棉CRISPR/Cas9基因组编辑体系的建立. 作物学报, 2018,44(2):227-235. |
LI J Y, LEI J F, DAI P H, YAO R, QU Y Y, CHEN Q J, LI Y, LIU X D . Establishment of CRISPR/Cas9 genome editing system based on GbU6 promoters in cotton ( Gossypium barbadense L.). The Crop Journal, 2018,44(2):227-235. (in Chinese) | |
[21] |
蒲艳, 刘超, 李继洋, 阿尔祖古丽·塔什, 胡燕, 刘晓东 . 番茄 U6 启动子的克隆及 CRISPR/Cas9 基因编辑体系的建立. 中国农业科学, 2018,51(2):315-326.
doi: 10.3864/j.issn.0578-1752.2018.02.011 |
PU Y, LIU C, LI J Y, ALZU G T, HU Y, LIU X D . Different SlU6 promoters cloning and establishment of CRISPR/Cas9 mediated gene editing system in tomato. Agricultural Sciences in China, 2018,51(2):315-326. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.02.011 |
|
[22] |
FENG Z Y, ZHANG B T, DING W N, LIU X D, YANG D L, WEI P L . Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 2013,23(10):1229-1232.
doi: 10.1038/cr.2013.114 pmid: 23958582 |
[23] |
JACOBS T B, LAFAYETTE P R, SCHMITZ R J, PARROTT W A . Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology, 2015,15(1):1-10.
doi: 10.1371/journal.pone.0136064 pmid: 26284791 |
[24] |
NISHITANI C, HIRAI N, KOMORI S, WADA M, OKADA K, OSAKABE K, YAMAMOTO T, OSAKABE Y . Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports, 2016,6:31481.
doi: 10.1038/srep31481 pmid: 27530958 |
[25] | 朱金洁 . CRISPR_Cas9介导的玉米基因组定点编辑研究[D]. 北京: 中国农业大学, 2015. |
ZHU J J . Targeted genome editing in maize using CRISPR-Cas9[D]. Beijing: China Agricultural University, 2015. (in Chinese) | |
[26] |
WANG M B, HELLIWELL C A, WU L M, WATERHOUSE P M, PEACOCK W J, DENNIS E S . Hairpin RNAs derived from RNA polymerase II and polymerase III promoter-directed transgenes are processed differently in plants. Rna-a Publication of the Rna Society, 2008,14(5):903-913.
doi: 10.1261/rna.760908 pmid: 18367720 |
[27] |
JEFFERSON R A, KAVANAGH T A, BEVAN M W . GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. THE EMBO Journal, 1987,6(13):3901-3907.
pmid: 3327686 |
[28] |
CHIU W L, NIWA Y, ZENG W K, HIRANO T, KOBAYASHI H, SHEEN J . Engineered GFP as a vital reporter in plants. Current Biology, 1996,6(3):325-330.
doi: 10.1016/s0960-9822(02)00483-9 pmid: 8805250 |
[29] |
ZHANG G H, GURTU V, KAIN S R . An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochemical and Biophysical Research Communications, 1996,227(3):707-711.
doi: 10.1006/bbrc.1996.1573 pmid: 8885998 |
[30] |
WELSH S, KAY S A . Reporter gene expression for monitoring gene transfer. Current Opinion in Biotechnology, 1997,8(5):617-622.
doi: 10.1016/s0958-1669(97)80038-9 pmid: 9353237 |
[31] | 雷建峰 . 棉花U6启动子克隆与功能分析及拟南芥GGB突变体的创制[D]. 乌鲁木齐: 新疆农业大学, 2016. |
LEI J F . Cloning and functional analysis of U6 promoters in cotton and creation of Arabidopsis GGB mutant[D]. Urumqi: Xinjiang Agricultural University, 2016. (in Chinese) | |
[32] |
KHAOULA B, ANGELA C G, SOPHIEN K, NEKRASOV V . Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 2013,9(1):39.
doi: 10.1186/1746-4811-9-39 pmid: 24112467 |
[1] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[2] | 赵海霞,肖欣,董玘鑫,吴花拉,李成磊,吴琦. 苦荞愈伤遗传转化体系的优化及用于FtCHS1的过表达分析[J]. 中国农业科学, 2022, 55(9): 1723-1734. |
[3] | 陈学森, 伊华林, 王楠, 张敏, 姜生辉, 徐娟, 毛志泉, 张宗营, 王志刚, 姜召涛, 徐月华, 李建明. 芽变选种推动世界苹果和柑橘产业优质高效发展案例解读[J]. 中国农业科学, 2022, 55(4): 755-768. |
[4] | 路翔, 高源, 王昆, 孙思邈, 李连文, 李海飞, 李青山, 冯建荣, 王大江. 苹果栽培品种不同族系香气特征分析[J]. 中国农业科学, 2022, 55(3): 543-557. |
[5] | 高小琴,聂继云,陈秋生,韩令喜,刘璐,程杨,刘明雨. 基于矿物元素指纹技术的‘富士’苹果产地溯源[J]. 中国农业科学, 2022, 55(21): 4252-4264. |
[6] | 储宝华,曹富国,卞宁宁,钱谦,李中兴,李雪薇,刘泽远,马锋旺,管清美. 84个苹果栽培品种对斑点落叶病的抗性评价和全基因组关联分析[J]. 中国农业科学, 2022, 55(18): 3613-3628. |
[7] | 解斌,安秀红,陈艳辉,程存刚,康国栋,周江涛,赵德英,李壮,张艳珍,杨安. 不同苹果砧木对持续低磷的响应及适应性评价[J]. 中国农业科学, 2022, 55(13): 2598-2612. |
[8] | 宋博文,杨龙,潘云飞,李海强,李浩,冯宏祖,陆宴辉. 农田景观格局对南疆苹果园梨小食心虫成虫种群动态的影响[J]. 中国农业科学, 2022, 55(1): 85-95. |
[9] | 沙仁和,兰黎明,王三红,罗昌国. 苹果转录因子MdWRKY40b抗白粉病的机理[J]. 中国农业科学, 2021, 54(24): 5220-5229. |
[10] | 曹钰晗,李紫腾,张静怡,张静娜,胡同乐,王树桐,王亚南,曹克强. 我国苹果斑点落叶病菌携带dsRNA分析及一种dsRNA病毒的鉴定[J]. 中国农业科学, 2021, 54(22): 4787-4799. |
[11] | 李紫腾,曹钰晗,李楠,孟祥龙,胡同乐,王树桐,王亚南,曹克强. 苹果锈果类病毒在7个品种苹果上的分子变异及系统发育关系[J]. 中国农业科学, 2021, 54(20): 4326-4336. |
[12] | 宋春晖,陈晓菲,王枚阁,郑先波,宋尚伟,焦健,王苗苗,马锋旺,白团辉. 基于SLAF-seq技术鉴定苹果砧木耐涝候选基因[J]. 中国农业科学, 2021, 54(18): 3932-3944. |
[13] | 孙擎,赵艳霞,程晋昕,曾厅余,张祎. 基于多种算法的果树果实生长模型研究—以云南昭通苹果为例[J]. 中国农业科学, 2021, 54(17): 3737-3751. |
[14] | 侯思宇,王欣芳,杜伟,冯晋华,韩渊怀,李红英,刘龙龙,孙朝霞. 苦荞WOX家族全基因组鉴定及响应愈伤诱导率表达分析[J]. 中国农业科学, 2021, 54(17): 3573-3586. |
[15] | 王程利,尹志远,聂嘉俊,林永辉,黄丽丽. 苹果黑腐皮壳菌CAP超家族蛋白基因鉴定及毒性功能分析[J]. 中国农业科学, 2021, 54(16): 3440-3450. |
|