| [1] |
ZHANG J S, ZHANG X T, TANG H B, ZHANG Q, HUA X T, MA X K, ZHU F, JONES T, ZHU X G, BOWERS J, et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L.. Nature Genetics, 2018, 50(11): 1565-1573.
doi: 10.1038/s41588-018-0237-2
|
| [2] |
HU X, LUO Z Y, XU C H, WU Z D, WU C W, EBID M H M, ZAN F G, ZHAO L P, LIU X L, LIU J Y. A comprehensive analysis of transcriptomics and metabolomics revealed key pathways involved in Saccharum spontaneum defense against Sporisorium scitamineum. Journal of Agricultural and Food Chemistry, 2024, 72(8): 4476-4492.
doi: 10.1021/acs.jafc.3c07768
|
| [3] |
ABU-ELLAIL ABU-ELLAIL F F B, D MOHAMED B. Effect of photo initiation treatments on flowering, pollen viability and seed germinability of four sugarcane clones. Journal of Sugarcane Research, 2019, 9(2): 138.
doi: 10.37580/JSR.2019.2.9.138-149
|
| [4] |
常海龙, 胡后祥, 张伟, 陈俊吕, 邱永生, 周峰, 张垂明, 吴其卫, 吴建涛, 刘壮, 等. 甘蔗开花生物学特性及花粉活力研究. 热带农业科学, 2017, 37(4): 7-12.
|
|
CHANG H L, HU H X, ZHANG W, CHEN J L, QIU Y S, ZHOU F, ZHANG C M, WU Q W, WU J T, LIU Z, et al. Flowering phenology and pollen activity of sugarcane. Chinese Journal of Tropical Agriculture, 2017, 37(4): 7-12. (in Chinese)
|
| [5] |
唐仕云, 王伦旺, 李翔, 谭芳, 黄海荣, 经艳, 黄家雍, 黎焕光, 方锋学, 郑书斌. 不同甘蔗亲本组合开花特性的调查研究. 中国糖料, 2011, 33(4): 22-24.
|
|
TANG S Y, WANG L W, LI X, TAN F, HUANG H R, JING Y, HUANG J Y, LI H G, FANG F X, ZHENG S B. Flowering characteristics investigation of different parents and combinations of sugarcane. Sugar Crops of China, 2011, 33(4): 22-24. (in Chinese)
|
| [6] |
雷敬超, 周会, 杨荣仲, 高丽花, 李翔, 黄海荣, 段维兴, 经艳, 王伦旺, 张革民, 等. 桂糖系列甘蔗亲本开花习性及其遗传分析. 热带作物学报, 2019, 40(1): 11-17.
doi: 10.3969/j.issn.1000-2561.2019.01.002
|
|
LEI J C, ZHOU H, YANG R Z, GAO L H, LI X, HUANG H R, DUAN W X, JING Y, WANG L W, ZHANG G M, et al. Flowering habit and heritability for GT sugarcane parents. Chinese Journal of Tropical Crops, 2019, 40(1): 11-17. (in Chinese)
doi: 10.3969/j.issn.1000-2561.2019.01.002
|
| [7] |
KOJIMA S, TAKAHASHI Y, KOBAYASHI Y, MONNA L, SASAKI T, ARAKI T, YANO M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant and Cell Physiology, 2002, 43(10): 1096-1105.
doi: 10.1093/pcp/pcf156
|
| [8] |
杨杰, 贺新兴, 陈蓉, 胡乐贞, 佟晓楠, 李兴涛. 甜橙PEBP基因家族的鉴定及在成花过程的表达分析. 分子植物育种, 2022, 20(4): 1127-1136.
|
|
YANG J, HE X X, CHEN R, HU L Z, TONG X N, LI X T. Genome-wide identification of PEBP gene family and expression analysis during flowering process in Citrus sinensis. Molecular Plant Breeding, 2022, 20(4): 1127-1136. (in Chinese)
|
| [9] |
刘合霞, 刘秦, 周兴文, 朱宇林, 李博. 茶树PEBP基因家族结构与功能特征分析. 分子植物育种, 2020, 18(20): 6657-6664.
|
|
LIU H X, LIU Q, ZHOU X W, ZHU Y L, LI B. Structure and function characteristics analysis of PEBP gene family in Camellia sinensis. Molecular Plant Breeding, 2020, 18(20): 6657-6664. (in Chinese)
|
| [10] |
WANG Z, ZHOU Z K, LIU Y F, LIU T F, LI Q, JI Y Y, LI C C, FANG C, WANG M, WU M, et al. Functional evolution of phosphatidylethanolamine binding proteins in soybean and Arabidopsis. The Plant Cell, 2015, 27(2): 323-336.
doi: 10.1105/tpc.114.135103
|
| [11] |
KARLGREN A, GYLLENSTRAND N, KÄLLMAN T, SUNDSTRÖM J F, MOORE D, LASCOUX M, LAGERCRANTZ U. Evolution of the PEBP gene family in plants: Functional diversification in seed plant evolution. Plant Physiology, 2011, 156(4): 1967-1977.
doi: 10.1104/pp.111.176206
pmid: 21642442
|
| [12] |
LEBEDEVA M A, DODUEVA I E, GANCHEVA M S, TVOROGOVA V E, KUZNETSOVA K A, LUTOVA L A. The evolutionary aspects of flowering control: florigens and anti-florigens. Russian Journal of Genetics, 2020, 56(11): 1323-1344.
doi: 10.1134/S102279542011006X
|
| [13] |
KOORNNEEF M, HANHART C J, VAN DER VEEN J H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Molecular and General Genetics, 1991, 229(1): 57-66.
doi: 10.1007/BF00264213
|
| [14] |
KARDAILSKY I, SHUKLA V K, AHN J H, DAGENAIS N, CHRISTENSEN S K, NGUYEN J T, CHORY J, HARRISON M J, WEIGEL D. Activation tagging of the floral inducer FT. Science, 1999, 286(5446): 1962-1965.
doi: 10.1126/science.286.5446.1962
pmid: 10583961
|
| [15] |
TAOKA K, OHKI I, TSUJI H, FURUITA K, HAYASHI K, YANASE T, YAMAGUCHI M, NAKASHIMA C, PURWESTRI Y A, TAMAKI S, et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature, 2011, 476(7360): 332-335.
doi: 10.1038/nature10272
|
| [16] |
CORBESIER L, VINCENT C, JANG S, FORNARA F, SEARLE I, GIAKOUNTIS A, FARRONA S, GISSOT L, TURNBULL C, et al. FT protein movement contributes to long- distance signaling in floral induction of Arabidopsis. Science, 2007, 316(5827): 1030-1033.
doi: 10.1126/science.1141752
|
| [17] |
KINOSHITA T, ONO N, HAYASHI Y, MORIMOTO S, NAKAMURA S, SODA M, KATO Y, OHNISHI M, NAKANO T, INOUE S I, et al. FLOWERING LOCUS T regulates stomatal opening. Current Biology, 2011, 21(14): 1232-1238.
doi: 10.1016/j.cub.2011.06.025
|
| [18] |
HIRAOKA K, YAMAGUCHI A, ABE M, ARAKI T. The florigen genes FT and TSF modulate lateral shoot outgrowth in Arabidopsis thaliana. Plant & Cell Physiology, 2013, 54(3): 352-368.
|
| [19] |
NAVARRO C, ABELENDA J A, CRUZ-ORÓ E, CUÉLLAR C A, TAMAKI S, SILVA J, SHIMAMOTO K, PRAT S. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature, 2011, 478(7367): 119-122.
doi: 10.1038/nature10431
|
| [20] |
HANANO S, GOTO K. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. The Plant Cell, 2011, 23(9): 3172-3184.
doi: 10.1105/tpc.111.088641
|
| [21] |
KANEKO-SUZUKI M, KURIHARA-ISHIKAWA R, OKUSHITA- TERAKAWA C, KOJIMA C, NAGANO-FUJIWARA M, OHKI I, TSUJI H, SHIMAMOTO K, TAOKA K I. TFL1-like proteins in rice antagonize rice FT-like protein in inflorescence development by competition for complex formation with 14-3-3 and FD. Plant and Cell Physiology, 2018, 59(3): 458-468.
doi: 10.1093/pcp/pcy021
|
| [22] |
ZHU Y, KLASFELD S, JEONG C W, JIN R, GOTO K, YAMAGUCHI N, WAGNER D. TERMINAL FLOWER 1-FD complex target genes and competition with FLOWERING LOCUS T. Nature Communications, 2020, 11: 5118.
doi: 10.1038/s41467-020-18782-1
pmid: 33046692
|
| [23] |
FABIÁN E VAISTIJ Y G. Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(26): 10866-10871.
|
| [24] |
JIN S, NASIM Z, SUSILA H, AHN J H. Evolution and functional diversification of FLOWERING LOCUS T/TERMINAL FLOWER 1 family genes in plants. Seminars in Cell & Developmental Biology, 2021, 109: 20-30.
|
| [25] |
ZHONG C, LI Z, CHENG Y L, ZHANG H N, LIU Y, WANG X G, JIANG C J, ZHAO X H, ZHAO S L, WANG J, et al. Comparative genomic and expression analysis insight into evolutionary characteristics of PEBP genes in cultivated peanuts and their roles in floral induction. International Journal of Molecular Sciences, 2022, 23(20): 12429.
doi: 10.3390/ijms232012429
|
| [26] |
HAYAMA R, AGASHE B, LULEY E, KING R, COUPLAND G. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. The Plant Cell, 2007, 19(10): 2988-3000.
doi: 10.1105/tpc.107.052480
|
| [27] |
YUAN X, QUAN S W, LIU J M, GUO C H, ZHANG Z R, KANG C, NIU J X. Evolution of the PEBP gene family in Juglandaceae and their regulation of flowering pathway under the synergistic effect of JrCO and JrNF-Y proteins. International Journal of Biological Macromolecules, 2022, 223(Pt A): 202-212.
doi: 10.1016/j.ijbiomac.2022.11.004
pmid: 36347378
|
| [28] |
WANG Q, ZHOU Y W, WANG F, LI X Y, YU Y Y, YU R C, FAN Y P. Genome-wide identification of PEBP gene family in Hedychium coronarium. Frontiers in Plant Science, 2025, 16: 1482764.
doi: 10.3389/fpls.2025.1482764
|
| [29] |
SUN Y M, JIA X Y, YANG Z R, FU Q J, YANG H H, XU X Y. Genome-wide identification of PEBP gene family in Solanum lycopersicum. International Journal of Molecular Sciences, 2023, 24(11): 9185.
doi: 10.3390/ijms24119185
|
| [30] |
COELHO C P, MINOW M A A, CHALFUN-JÚNIOR A, COLASANTI J. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis. Frontiers in Plant Science, 2014, 5: 221.
|
| [31] |
VENAIL J, DA SILVA SANTOS P H, MANECHINI J R, ALVES L C, SCARPARI M, FALCÃO T, ROMANEL E, BRITO M, VICENTINI R, PINTO L, et al. Analysis of the PEBP gene family and identification of a novel FLOWERING LOCUS T orthologue in sugarcane. Journal of Experimental Botany, 2022, 73(7): 2035-2049.
doi: 10.1093/jxb/erab539
|
| [32] |
PAVANI G, MALHOTRA P K, VERMA S K. Flowering in sugarcane- insights from the grasses. 3 Biotech, 2023, 13(5): 154.
doi: 10.1007/s13205-023-03573-4
|
| [33] |
CHEN C J, WU Y, LI J W, WANG X, ZENG Z H, XU J, LIU Y L, FENG J T, CHEN H, HE Y H, et al. TBtools-Ⅱ: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant, 2023, 16(11): 1733-1742.
doi: 10.1016/j.molp.2023.09.010
|
| [34] |
阙友雄, 许莉萍, 徐景升, 张积森, 张木清, 陈如凯. 甘蔗基因表达定量PCR分析中内参基因的选择. 热带作物学报, 2009, 30(3): 274-278.
|
|
QUE Y X, XU L P, XU J S, ZHANG J S, ZHANG M Q, CHEN R K. Selection of control genes in real-time qPCR analysis of gene expression in sugarcane. Chinese Journal of Tropical Crops, 2009, 30(3): 274-278. (in Chinese)
|
| [35] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262
|
| [36] |
ZHAO C Y, ZHU M, GUO Y Y, SUN J, MA W H, WANG X X. Genomic survey of PEBP gene family in rice: Identification, phylogenetic analysis, and expression profiles in organs and under abiotic stresses. Plants, 2022, 11(12): 1576.
doi: 10.3390/plants11121576
|
| [37] |
WOLABU T W, ZHANG F, NIU L F, KALVE S, BHATNAGAR- MATHUR P, MUSZYNSKI M G, TADEGE M. Three FLOWERING LOCUS T-like genes function as potential florigens and mediate photoperiod response in sorghum. New Phytologist, 2016, 210(3): 946-959.
doi: 10.1111/nph.13834
pmid: 26765652
|
| [38] |
李贺, 郝立冬. 玉米PEBP基因家族鉴定与表达模式分析. 分子植物育种, 2023: 1-13. (2023-12-05). https://kns.cnki.net/KCMS/detail/detail.aspx filename=FZZW20231204004&dbname=CJFD&dbcode=CJFQ.
|
|
LI H, HAO L D. Identification and expression pattern analysis of PEBP gene family in maize. Molecular Plant Breeding, 2023: 1-13. (2023-12-05). https://kns.cnki.net/KCMS/detail/detail.aspx filename=FZZW20231204004&dbname=CJFD&dbcode=CJFQ. in Chinese)
|
| [39] |
李永光, 任辉, 张英杰, 李瑞宁, 艾昊, 黄先忠. 十字花科植物PEBP基因家族的分子进化. 生物多样性, 2022, 30(6): 164-174.
|
|
LI Y G, REN H, ZHANG Y J, LI R N, AI H, HUANG X Z. Analysis of the molecular evolution of the PEBP gene family in cruciferous plants. Biodiversity Science, 2022, 30(6): 164-174. (in Chinese)
|
| [40] |
ZHENG X M, WU F Q, ZHANG X, LIN Q B, WANG J, GUO X P, LEI C L, CHENG Z J, ZOU C, WAN J M. Evolution of the PEBP gene family and selective signature on FT-like clade. Journal of Systematics and Evolution, 2016, 54(5): 502-510.
doi: 10.1111/jse.v54.5
|
| [41] |
WICKLAND D P, HANZAWA Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: Functional evolution and molecular mechanisms. Molecular Plant, 2015, 8(7): 983-997.
doi: 10.1016/j.molp.2015.01.007
|
| [42] |
PANCHY N, LEHTI-SHIU M, SHIU S H. Evolution of gene duplication in plants. Plant Physiology, 2016, 171(4): 2294-2316.
doi: 10.1104/pp.16.00523
pmid: 27288366
|
| [43] |
LI Q, FANG C, DUAN Z B, LIU Y C, QIN H, ZHANG J X, SUN P, LI W B, WANG G D, TIAN Z X. Functional conservation and divergence of GmCHLI genes in polyploid soybean. The Plant Journal, 2016, 88(4): 584-596.
doi: 10.1111/tpj.13282
pmid: 27459730
|
| [44] |
ZHOU L N, ZHU C, FANG X J, LIU H Q, ZHONG S Y, LI Y, LIU J C, SONG Y, JIAN X, LIN Z W. Gene duplication drove the loss of awn in sorghum. Molecular Plant, 2021, 14(11): 1831-1845.
doi: 10.1016/j.molp.2021.07.005
pmid: 34271177
|
| [45] |
ENDO T, SHIMADA T, FUJII H, KOBAYASHI Y, ARAKI T, OMURA M. Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Research, 2005, 14(5): 703-712.
doi: 10.1007/s11248-005-6632-3
|