[1] |
陈光宇. 中国芦笋产业发展现状与趋势. 世界农业, 2013(10): 181-186, 188.
|
|
CHEN G Y. The status quo and trends for the development of Asparagus industry in China. World Agriculture, 2013(10): 181-186, 188. (in Chinese)
|
[2] |
SACHDEV S, ANSARI S A, ANSARI M I, FUJITA M, HASANUZZAMAN M. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 2021, 10(2): 277.
|
[3] |
RHEE S G. Overview on peroxiredoxin. Molecules and Cells, 2016, 39(1): 1-5.
doi: 10.14348/molcells.2016.2368
pmid: 26831451
|
[4] |
孙豪, 孙晨. 过氧化物还原酶(peroxiredoxin)家族研究进展. 生命的化学, 2023, 43(10): 1569-1578.
|
|
SUN H, SUN C. Research progress of peroxiredoxin family. Chemistry of Life, 2023, 43(10): 1569-1578. (in Chinese)
|
[5] |
BERNROITNER M, ZAMOCKY M, FURTMÜLLER P G, PESCHEK G A, OBINGER C. Occurrence, phylogeny, structure, and function of catalases and peroxidases in cyanobacteria. Journal of Experimental Botany, 2009, 60(2): 423-440.
doi: 10.1093/jxb/ern309
pmid: 19129167
|
[6] |
BOURGONJE A R, VAN GOOR H, BAKKER S J L, HILLEBRANDS J L, BILO H J G, DULLAART R P F, VAN DIJK P R. Serum peroxiredoxin-4, a biomarker of oxidative stress, is associated with the development of nephropathy in patients with type 2 diabetes (Zodiac-65). Free Radical Biology and Medicine, 2024, 212: 186-190.
doi: 10.1016/j.freeradbiomed.2023.12.025
pmid: 38151214
|
[7] |
左溪如, 王淘, 陈烨, 闫亚娜, 黄桂艳, 李瑞民. 柑橘黄龙病菌过氧化物还原酶基因CLasPrx的克隆及功能分析. 植物保护学报, 2024, 51(3): 654-662.
|
|
ZUO X R, WANG T, CHEN Y, YAN Y N, HUANG G Y, LI R M. Cloning and functional analysis of a peroxiredoxin gene, CLasPrx, from huanglongbing pathogen Candidatus Liberibacter asiaticus. Journal of Plant Protection, 2024, 51(3): 654-662. (in Chinese)
|
[8] |
AIHAITI Y, TUERHONG X, ZHENG H S, CAI Y S, YANG M Y, XU P. Peroxiredoxin 4 regulates tumor-cell-like characteristics of fibroblast-like synoviocytes in rheumatoid arthritis through PI3k/Akt signaling pathway. Clinical Immunology, 2022, 237: 108964.
|
[9] |
GAO D D, LV Y, HONG F, WU D, WANG T, GAO G, LIN Z J, YANG R Y, HU J S, HE A L, ZHANG P Y. Peroxiredoxin 6 maintains mitochondrial homeostasis and promotes tumor progression through ROS/JNK/p38 MAPK signaling pathway in multiple myeloma. Scientific Reports, 2025, 15: 70.
|
[10] |
RAN X Q, GAO L, YAN M, KANG C J. Peroxiredoxin 4 interacts with domeless and participates in antibacterial immune response through the JAK/STAT pathway. Frontiers in Immunology, 2022, 13: 907183.
|
[11] |
ZHOU F L, CHEN F, OUYANG Z W, ZHU R D, ZHOU R P, HU W, LU C. Functions of peroxiredoxins and their roles in autoimmune diseases. Antioxidants & Redox Signaling, 2024, 40(4/5/6): 329-344.
|
[12] |
KIM Y, JANG H H. The role of peroxiredoxin family in cancer signaling. Journal of Cancer Prevention, 2019, 24(2): 65-71.
doi: 10.15430/JCP.2019.24.2.65
pmid: 31360686
|
[13] |
WU M Y, DENG C J, LO T H, CHAN K Y, LI X, WONG C M. Peroxiredoxin, senescence, and cancer. Cells, 2022, 11(11): 1772.
|
[14] |
MISHRA D, SHEKHAR S, CHAKRABORTY S, CHAKRABORTY N. Wheat 2-Cys peroxiredoxin plays a dual role in chlorophyll biosynthesis and adaptation to high temperature. The Plant Journal, 2021, 105(5): 1374-1389.
doi: 10.1111/tpj.15119
pmid: 33283912
|
[15] |
WANG Y Y, LIU Z Y, WANG P L, JIANG B, LEI X J, WU J, DONG W F, GAO C Q. A 2-Cys peroxiredoxin gene from Tamarix hispida improved salt stress tolerance in plants. BMC Plant Biology, 2020, 20: 360.
|
[16] |
XIAO G L, ZHAO M M, LIU Q H, ZHOU J Z, CHENG Z H, WANG Q N, XIA G M, WANG M C. TaBAS1 encoding a typical 2-Cys peroxiredoxin enhances salt tolerance in wheat. Frontiers in Plant Science, 2023, 14: 1152375.
|
[17] |
WANG J C, SONG J Q, QI H L, ZHANG H J, WANG L, ZHANG H B, CUI C C, JI G X, MUHAMMAD S, SUN G Y, XU Z R, ZHANG H H. Overexpression of 2-Cys Peroxiredoxin alleviates the NaHCO3 stress-induced photoinhibition and reactive oxygen species damage of tobacco. Plant Physiology and Biochemistry, 2023, 201: 107876.
|
[18] |
XU A Q, CHENG F, ZHOU S, HU H, BIE Z L. Chilling-induced H2O2 signaling activates the antioxidant enzymes in alleviating the photooxidative damage caused by loss of function of 2-Cys peroxiredoxin in watermelon. Plant Stress, 2022, 6: 100108.
|
[19] |
HERNÁNDEZ M L, JIMÉNEZ-LÓPEZ J, CEJUDO F J, PÉREZ-RUIZ J M. 2-Cys peroxiredoxins contribute to thylakoid lipid unsaturation by affecting ω-3 fatty acid desaturase 8. Plant Physiology, 2024, 195: 1521-1535.
doi: 10.1093/plphys/kiae102
pmid: 38386701
|
[20] |
UMATE P. Genome-wide analysis of thioredoxin fold superfamily peroxiredoxins in Arabidopsis and rice. Plant Signaling & Behavior, 2010, 5(12): 1543-1546.
|
[21] |
FENG Y L, WEI R H, LIU A Y, FAN S M, CHE J C, ZHANG Z, TIAN B M, YUAN Y L, SHI G Y, SHANG H H. Genome-wide identification, evolution, expression, and alternative splicing profiles of peroxiredoxin genes in cotton. PeerJ, 2021, 9: e10685.
|
[22] |
LI Y H, ZHANG L M, XU J J, ZHU J X, WANG L, CHEN C J, XU H Y, ZHENG Y, LI C H, MU Z S, et al. Basic leucine zipper (bZIP) family in asparagus (Asparagus officinalis): Genome-wide identification, evolutionary, structure, collinearity, and expression analyses under abiotic stress at the seeding stage. Journal of Plant Interactions, 2023, 18(1): 2268627.
|
[23] |
LI S F, ZHANG G J, ZHANG X J, YUAN J H, DENG C L, GAO W J. Comparative transcriptome analysis reveals differentially expressed genes associated with sex expression in garden asparagus (Asparagus officinalis). BMC Plant Biology, 2017, 17: 143.
|
[24] |
IDE M, MASUDA K, TSUGAMA D, FUJINO K. Death of female flower microsporocytes progresses independently of meiosis-like process and can be accelerated by specific transcripts in Asparagus officinalis. Scientific Reports, 2019, 9: 2703.
|
[25] |
WEN S S, YING J L, YE Y J, CAI Y F, QIAN R J. Comprehensive transcriptome analysis of Asparagus officinalis in response to varying levels of salt stress. BMC Plant Biology, 2024, 24: 819.
|
[26] |
ZHANG X H, HAN C Z, WANG Y B, LIU T, LIANG Y Q, CAO Y P. Integrated analysis of transcriptomics and metabolomics of garden asparagus (Asparagus officinalis L.) under drought stress. BMC Plant Biology, 2024, 24(1): 563.
|
[27] |
ABDELRAHMAN M, NAKABAYASHI R, MORI T, IKEUCHI T, MORI M, MURAKAMI K, OZAKI Y, MATSUMOTO M, URAGAMI A, TSUJIMOTO H, TRAN L P, KANNO A. Comparative metabolome and transcriptome analyses of susceptible Asparagus officinalis and resistant wild A. kiusianus reveal insights into stem blight disease resistance. Plant & Cell Physiology, 2020, 61(8): 1464-1476.
|
[28] |
MA J Y, LI X Y, HE M L, LI Y W, LU W, LI M Y, SUN B, ZHENG Y X. A joint transcriptomic and metabolomic analysis reveals the regulation of shading on lignin biosynthesis in asparagus. International Journal of Molecular Sciences, 2023, 24(2): 1539.
|
[29] |
GILL A S, WOLYN D J. Transcriptomic analysis of Asparagus officinalis cultivars with varying levels of freezing tolerance over fall acclimation and spring deacclimation periods. Frontiers in Plant Science, 2024, 15: 1442784.
|
[30] |
陈尘, 韩立敏, 化文平, 杨晓潼. 丹参DHAR家族基因的鉴定及表达模式分析. 园艺学报, 2020, 47(11): 2181-2193.
|
|
CHEN C, HAN L M, HUA W P, YANG X T. Identification and expression analysis of dehydroascorbate reductase (DHAR) gene family in Salvia miltiorrhiza. Acta Horticulturae Sinica, 2020, 47(11): 2181-2193. (in Chinese)
|
[31] |
于婷婷, 李欢, 宁源生, 宋建飞, 彭璐琳, 贾竣淇, 张玮玮, 杨洪强. 苹果GRAS全基因组鉴定及其对生长素的响应分析. 园艺学报, 2023, 50(2): 397-409.
doi: 10.16420/j.issn.0513-353x.2021-1039
|
|
YU T T, LI H, NING Y S, SONG J F, PENG L L, JIA J Q, ZHANG W W, YANG H Q. Genome-wide identification of GRAS gene family in apple and expression analysis of its response to auxin. Acta Horticulturae Sinica, 2023, 50(2): 397-409. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-1039
|