| [1] |
JI Y X, ZHAO Y, HAN X Z, CHEN X, YAN J, LU X C, ZHU Y C, ZOU W X. Effect of long-term fertilization practices on the stability of soil organic matter in the northeast black soil region in China. Agronomy, 2024, 14(10): 2272.
|
| [2] |
ABDO A I, SUN D L, SHI Z J, ABDEL-FATTAH M K, ZHANG J E, KUZYAKOV Y. Conventional agriculture increases global warming while decreasing system sustainability. Nature Climate Change, 2024, 15(1): 110-117.
|
| [3] |
HU Z K, DELGADO-BAQUERIZO M, FANIN N, CHEN X Y, ZHOU Y, DU G Z, HU F, JIANG L, HU S J, LIU M Q. Nutrient- induced acidification modulates soil biodiversity-function relationships. Nature Communications, 2024, 15: 2858.
|
| [4] |
SHI T S, COLLINS S L, YU K L, PEÑUELAS J, SARDANS J, LI H L, YE J S. A global meta-analysis on the effects of organic and inorganic fertilization on grasslands and croplands. Nature Communications, 2024, 15: 3411.
|
| [5] |
HERNANDEZ D J, DAVID A S, MENGES E S, SEARCY C A, AFKHAMI M E. Environmental stress destabilizes microbial networks. The ISME Journal, 2021, 15(6): 1722-1734.
|
| [6] |
PHILIPPOT L, CHENU C, KAPPLER A, RILLIG M C, FIERER N. The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 2023, 22(4): 226-239.
|
| [7] |
TANG S, MA Q X, MARSDEN K A, CHADWICK D R, LUO Y, KUZYAKOV Y, WU L H, JONES D L. Microbial community succession in soil is mainly driven by carbon and nitrogen contents rather than phosphorus and sulphur contents. Soil Biology and Biochemistry, 2023, 180: 109019.
|
| [8] |
LIU B, XIA H, JIANG C C, RIAZ M, YANG L, CHEN Y F, FAN X P, XIA X G. 14 years applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China. Science of the Total Environment, 2022, 841: 156608.
|
| [9] |
XIE Z H, YU Z H, LI Y S, WANG G H, LIU X B, TANG C X, LIAN T X, ADAMS J, LIU J J, LIU J D, HERBERT S J, JIN J. Soil microbial metabolism on carbon and nitrogen transformation links the crop-residue contribution to soil organic carbon. NPJ Biofilms and Microbiomes, 2022, 8: 14.
|
| [10] |
LIU S B, WANG J Y, PU S Y, BLAGODATSKAYA E, KUZYAKOV Y, RAZAVI B S. Impact of manure on soil biochemical properties: A global synthesis. Science of the Total Environment, 2020, 745: 141003.
|
| [11] |
ZHAO N, WANG X Q, MA J, LI X H, CAO J F, ZHOU J, WU L M, ZHAO P Y, CAO W D. Co-incorporating green manure and crop straw increases crop productivity and improves soil quality with low greenhouse-gas emissions in a crop rotation. The Crop Journal, 2024, 12(4): 1233-1241.
|
| [12] |
LI X Y, LI B, CHEN L, LIANG J Y, HUANG R, TANG X Y, ZHANG X, WANG C Q. Partial substitution of chemical fertilizer with organic fertilizer over seven years increases yields and restores soil bacterial community diversity in wheat-rice rotation. European Journal of Agronomy, 2022, 133: 126445.
|
| [13] |
ZHU L Y, LUAN L, CHEN Y, WANG X Y, ZHOU S G, ZOU W X, HAN X R, DUAN Y H, ZHU B, LI Y, et al. Community assembly of organisms regulates soil microbial functional potential through dual mechanisms. Global Change Biology, 2024, 30(2): e17160.
|
| [14] |
GUO Z B, WAN S X, HUA K K, YIN Y, CHU H Y, WANG D Z, GUO X S. Fertilization regime has a greater effect on soil microbial community structure than crop rotation and growth stage in an agroecosystem. Applied Soil Ecology, 2020, 149: 103510.
|
| [15] |
LIU C, ZHOU Z Y, SUN S, ZHANG Q, SUN S Q, RAVANBAKHSH M, WEI Z, LI R, WANG S M, et al. Investigating protistan predators and bacteria within soil microbiomes in agricultural ecosystems under organic and chemical fertilizer applications. Biology and Fertility of Soils, 2024, 60(7): 1009-1024.
|
| [16] |
ZHAO Z Y, MA Y T, ZHANG A, CHEN Y M, ZHENG Z X, ZHENG W, ZHAI B N. Response of apple orchard bacteria co-occurrence network pattern to long-term organic fertilizer input. Applied Soil Ecology, 2023, 191: 105035.
|
| [17] |
LI K, XING X Y, WANG S B, LIAO R J, HASSAN M U, AAMER M, BARBANTI L, WEN T W, XU H F. Organic fertilisation enhances network complexity among bacteria, fungi, and protists by improving organic matter and phosphorus in acidic agricultural soils. European Journal of Soil Biology, 2024, 122: 103649.
|
| [18] |
WANG L, WANG J, TANG Z H, WANG J D, ZHANG Y C. Long- term organic fertilization reshapes the communities of bacteria and fungi and enhances the activities of C- and P-cycling enzymes in calcareous alluvial soil. Applied Soil Ecology, 2024, 194: 105204.
|
| [19] |
ZHANG Z M, YAN J, HAN X Z, ZOU W X, CHEN X, LU X C, FENG Y T. Labile organic carbon fractions drive soil microbial communities after long-term fertilization. Global Ecology and Conservation, 2021, 32: e01867.
|
| [20] |
LI K, CHEN A L, SHENG R, HOU H J, ZHU B L, WEI W X, ZHANG W Z. Long-term chemical and organic fertilization induces distinct variations of microbial associations but unanimous elevation of soil multifunctionality. Science of the Total Environment, 2024, 931: 172862.
|
| [21] |
WANG J L, LIU K L, ZHAO X Q, ZHANG H Q, LI D, LI J J, SHEN R F. Balanced fertilization over four decades has sustained soil microbial communities and improved soil fertility and rice productivity in red paddy soil. Science of the Total Environment, 2021, 793: 148664.
|
| [22] |
DĂMĂTÎRCĂ C, MORETTI B, BERTORA C, FERRARINI A, LERDA C, MANIA I, CELI L, GORRA R, ZAVATTARO L. Residue incorporation and organic fertilisation improve carbon and nitrogen turnover and stabilisation in maize monocropping. Agriculture, Ecosystems & Environment, 2023, 342: 108255.
|
| [23] |
SHI Y, DELGADO-BAQUERIZO M, LI Y T, YANG Y F, ZHU Y G, PEÑUELAS J, CHU H Y. Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems. Environment International, 2020, 142: 105869.
|
| [24] |
郭伟, 周云鹏, 陈美淇, 李丹丹, 王青霞, 周谈坛, 赵炳梓. 秸秆与有机无机肥配施对潮土关键微生物及小麦产量的影响. 土壤学报, 2024, 61(4): 1134-1146.
|
|
GUO W, ZHOU Y P, CHEN M Q, LI D D, WANG Q X, ZHOU T T, ZHAO B Z. Effects of combined application of straw and organic-inorganic fertilizers on key microorganisms and wheat yield in fluvo-aquic soil. Acta Pedologica Sinica, 2024, 61(4): 1134-1146. (in Chinese)
|
| [25] |
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000: 39-57.
|
|
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000: 39-57. (in Chinese)
|
| [26] |
HE H, PENG M W, LU W D, RU S B, HOU Z N, LI J H. Organic fertilizer substitution promotes soil organic carbon sequestration by regulating permanganate oxidizable carbon fractions transformation in oasis wheat fields. Catena, 2023, 221: 106784.
|
| [27] |
LIU C S, ZHAO D F, MA W J, GUO Y D, WANG A J, WANG Q L, LEE D J. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp. Applied Microbiology and Biotechnology, 2016, 100(3): 1421-1426.
|
| [28] |
LIU C, LI C N, JIANG Y Q, ZENG R J, YAO M J, LI X Z. A guide for comparing microbial co-occurrence networks. iMeta, 2023, 2(1): e71.
|
| [29] |
FRIEDMAN J, ALM E J. Inferring correlation networks from genomic survey data. PLoS Computational Biology, 2012, 8(9): e1002687.
|
| [30] |
WEN T, NIU G Q, CHEN T, SHEN Q R, YUAN J, LIU Y X. The best practice for microbiome analysis using R. Protein & Cell, 2023, 14(10): 713-725.
|
| [31] |
ZHANG Z M, HE P, HAO X X, LI L J. Long-term mineral combined with organic fertilizer supports crop production by increasing microbial community complexity. Applied Soil Ecology, 2023, 188: 104930.
|
| [32] |
GUIMERÀ R, NUNES AMARAL L A. Functional cartography of complex metabolic networks. Nature, 2005, 433(7028): 895-900.
|
| [33] |
CHENU C, ANGERS D A, BARRÉ P, DERRIEN D, ARROUAYS D, BALESDENT J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research, 2019, 188: 41-52.
|
| [34] |
YANG X, WANG B R, FAKHER A, AN S S, KUZYAKOV Y. Contribution of roots to soil organic carbon: From growth to decomposition experiment. Catena, 2023, 231: 107317.
|
| [35] |
GARCÍA-ORENES F, ROLDÁN A, MORUGÁN-CORONADO A, LINARES C, CERDÀ A, CARAVACA F. Organic fertilization in traditional Mediterranean grapevine orchards mediates changes in soil microbial community structure and enhances soil fertility. Land Degradation & Development, 2016, 27(6): 1622-1628.
|
| [36] |
SICILIANO S D, PALMER A S, WINSLEY T, LAMB E, BISSETT A, BROWN M V, VAN DORST J, JI M K, FERRARI B C, GROGAN P, CHU H Y, SNAPE I. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biology and Biochemistry, 2014, 78: 10-20.
|
| [37] |
HU X J, GU H D, LIU J J, WEI D, ZHU P, CUI X A, ZHOU B K, CHEN X L, JIN J, LIU X B, WANG G H. Metagenomic strategies uncover the soil bioavailable phosphorus improved by organic fertilization in Mollisols. Agriculture, Ecosystems & Environment, 2023, 349: 108462.
|
| [38] |
LIU C Z, HAN X Z, LU X C, YAN J, CHEN X, ZOU W X. Response of soil enzymatic activity to pore structure under inversion tillage with organic materials incorporation in a Haplic Chernozem. Journal of Environmental Management, 2024, 370: 122421.
|
| [39] |
LIU X Q, LIU H R, ZHANG Y S, LIU C R, LIU Y N, LI Z H, ZHANG M C. Organic amendments alter microbiota assembly to stimulate soil metabolism for improving soil quality in wheat-maize rotation system. Journal of Environmental Management, 2023, 339: 117927.
|
| [40] |
ABAY P, GONG L, LUO Y, ZHU H Q, DING Z L. Soil extracellular enzyme stoichiometry reveals the nutrient limitations in soil microbial metabolism under different carbon input manipulations. Science of the Total Environment, 2024, 913: 169793.
|
| [41] |
KOBIERSKI M, BARTKOWIAK A, LEMANOWICZ J, PIEKARCZYK M. Impact of poultry manure fertilization on chemical and biochemical properties of soils. Plant, Soil and Environment, 2017, 63(12): 558-563.
|
| [42] |
BÜNEMANN E K, BONGIORNO G, BAI Z G, CREAMER R E, DE DEYN G, DE GOEDE R, FLESKENS L, GEISSEN V, KUYPER T W, MÄDER P, et al. Soil quality—A critical review. Soil Biology and Biochemistry, 2018, 120: 105-125.
|
| [43] |
ZHOU X, TAHVANAINEN T, MALARD L, CHEN L, PÉREZ- PÉREZ J, BERNINGER F. Global analysis of soil bacterial genera and diversity in response to pH. Soil Biology and Biochemistry, 2024, 198: 109552.
|
| [44] |
马垒, 李燕, 魏建林, 周晓琳, 李子双, 李国生, 吴小宾, 刘兆辉, 谭德水. 连续施用化肥及秸秆还田对潮土酶活性、细菌群落和分子生态网络的影响. 植物营养与肥料学报, 2022, 28(8): 1353-1363.
|
|
MA L, LI Y, WEI J L, ZHOU X L, LI Z S, LI G S, WU X B, LIU Z H, TAN D S. Effects of continuous chemical fertilizer application and straw returning on soil enzyme activity, bacterial community and co-occurrence patterns in a fluvo-aquic soil. Journal of Plant Nutrition and Fertilizers, 2022, 28(8): 1353-1363. (in Chinese)
|
| [45] |
BEI S K, ZHANG Y L, LI T T, CHRISTIE P, LI X L, ZHANG J L. Response of the soil microbial community to different fertilizer inputs in a wheat-maize rotation on a calcareous soil. Agriculture, Ecosystems & Environment, 2018, 260: 58-69.
|
| [46] |
CEDERLUND H, WESSÉN E, ENWALL K, JONES C M, JUHANSON J, PELL M, PHILIPPOT L, HALLIN S. Soil carbon quality and nitrogen fertilization structure bacterial communities with predictable responses of major bacterial phyla. Applied Soil Ecology, 2014, 84: 62-68.
|
| [47] |
练金山, 王慧颖, 徐明岗, 魏文良, 段英华, 刘树堂. 长期施用有机肥潮土细菌的多样性及功能预测. 植物营养与肥料学报, 2021, 27(12): 2073-2082.
|
|
LIAN J S, WANG H Y, XU M G, WEI W L, DUAN Y H, LIU S T. Diversity and function prediction of bacteria community in fluvo- aquic soils as affected by long-term organic fertilization. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2073-2082. (in Chinese)
|
| [48] |
LI X M, CHEN Q L, HE C, SHI Q, CHEN S C, REID B J, ZHU Y G, SUN G X. Organic carbon amendments affect the chemodiversity of soil dissolved organic matter and its associations with soil microbial communities. Environmental Science & Technology, 2019, 53(1): 50-59.
|
| [49] |
CHEN L, LIU Q, DU H L, CUI J X, CHEN Y Q. Organic materials return suppressed soil N2O emissions by changing the composition instead of abundance of denitrifying microbial community. Applied Soil Ecology, 2024, 204: 105759.
|
| [50] |
CAO X Q, LIU J L, ZHANG L L, MAO W J, LI M, WANG H, SUN W L. Response of soil microbial ecological functions and biological characteristics to organic fertilizer combined with biochar in dry direct-seeded paddy fields. Science of the Total Environment, 2024, 948: 174844.
|
| [51] |
SU Y, LÜ J L, YU M, MA Z H, XI H, KOU C L, HE Z C, SHEN A L. Long-term decomposed straw return positively affects the soil microbial community. Journal of Applied Microbiology, 2020, 128(1): 138-150.
|
| [52] |
吴宪, 张婷, 王蕊, 王欣奕, 赵建宁, 王丽丽, 杨殿林, 李刚, 修伟明. 化肥减量配施有机肥和秸秆对华北潮土团聚体分布及稳定性的影响. 生态环境学报, 2020, 29(5): 933-941.
|
|
WU X, ZHANG T, WANG R, WANG X Y, ZHAO J N, WANG L L, YANG D L, LI G, XIU W M. Effects of chemical fertilizer reduction combined with application of organic fertilizer and straw on fluvo-aquic soil aggregate distribution and stability in North China. Ecology and Environmental Sciences, 2020, 29(5): 933-941. (in Chinese)
|
| [53] |
YANG L H, SUN R H, LI J G, ZHAI L M, CUI H L, FAN B Q, WANG H Y, LIU H B. Combined organic-inorganic fertilization builds higher stability of soil and root microbial networks than exclusive mineral or organic fertilization. Soil Ecology Letters, 2022, 5(2): 220142.
|
| [54] |
张周, 陈瑞蕊, 王晓婷, 俞冰倩, 林先贵, 冯有智. 干旱扰动下长期不同施肥潮土微生物群落稳定性研究. 土壤学报, 2024, 61(1): 211-222.
|
|
ZHANG Z, CHEN R R, WANG X T, YU B Q, LIN X G, FENG Y Z. Soil microbial community stability of different fertilization strategies under drought disturbance. Acta Pedologica Sinica, 2024, 61(1): 211-222. (in Chinese)
|
| [55] |
WANG J F, YANG X Y, HUANG S M, WU L, CAI Z J, XU M G. Long-term combined application of organic and inorganic fertilizers increases crop yield sustainability by improving soil fertility in maize-wheat cropping systems. Journal of Integrative Agriculture, 2025, 24(1): 290-305.
|
| [56] |
WANG E Z, LIN X L, TIAN L, WANG X G, JI L, JIN F, TIAN C J. Effects of short-term rice straw return on the soil microbial community. Agriculture, 2021, 11(6): 561.
|
| [57] |
张艳楠, 李艳丽, 王磊, 陈金海, 胡煜, 付小花, 乐毅全. 崇明东滩不同演替阶段湿地土壤有机碳汇聚能力的差异性及其微生物机制. 农业环境科学学报, 2012, 31(3): 631-637.
|
|
ZHANG Y N, LI Y L, WANG L, CHEN J H, HU Y, FU X H, LE Y Q. Variability in organic carbon storage capability of soils at different successional stages in Chongming Dongtan wetland and its microbial mechanism. Journal of Agro-Environment Science, 2012, 31(3): 631-637. (in Chinese)
|
| [58] |
梁幸, 孔令露. 噬几丁质菌属及其天然产物研究进展. 工业微生物, 2023, 53(1): 22-25.
|
|
LIANG X, KONG L L. On the research progress of Chitinophaga species and its natural products. Industrial Microbiology, 2023, 53(1): 22-25. (in Chinese)
|
| [59] |
黄瑞林, 张娜, 孙波, 梁玉婷. 典型农田根际土壤伯克霍尔德氏菌群落结构及其多样性. 土壤学报, 2020, 57(4): 975-985.
|
|
HUANG R L, ZHANG N, SUN B, LIANG Y T. Community structure of Burkholderiales and its diversity in typical maize rhizosphere soil. Acta Pedologica Sinica, 2020, 57(4): 975-985. (in Chinese)
|
| [60] |
SONG M Y, LI J F, GAO L H, TIAN Y Q. Comprehensive evaluation of effects of various carbon-rich amendments on overall soil quality and crop productivity in degraded soils. Geoderma, 2023, 436: 116529.
|
| [61] |
KOPPRIO G A, NEOGI S B, RASHID H, ALONSO C, YAMASAKI S, KOCH B P, GÄRDES A, LARA R J. Vibrio and bacterial communities across a pollution gradient in the Bay of Bengal: unraveling their biogeochemical drivers. Frontiers in Microbiology, 2020, 11: 594.
|