[1] |
SHARPLEY A N, CHAPRA S C, WEDEPOHL R, SIMS J T, DANIEL T C, REDDY K R. Managing agricultural phosphorus for protection of surface waters: issues and options. Journal of Environmental Quality, 1994, 23(3): 437-451.
|
[2] |
GEORGE T S, FRANSSON A M, HAMMOND J P, WHITE P J. Phosphorus nutrition:rhizosphere processes, plant response and adaptations//BÜNEMANN E, OBERSON A, FROSSARD E. Phosphorus in Action. Berlin, Heidelberg: Springer, 2011: 245-271.
|
[3] |
郎明, 李佳颖, 苏卫华, 邹温馨, 刘于, 陈新平. 长期施磷对石灰性土壤中编码碱性磷酸酶基因的细菌群落的影响. 微生物学报, 2022, 62(1): 242-258.
|
|
LANG M, LI J Y, SU W H, ZOU W X, LIU Y, CHEN X P. Effects of long-term phosphorus application on phoD harboring bacterial community in calcareous soil. Acta Microbiologica Sinica, 2022, 62(1): 242-258. (in Chinese)
|
[4] |
SAKURAI M, WASAKI J, TOMIZAWA Y, SHINANO T, OSAKI M. Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Science and Plant Nutrition, 2008, 54(1): 62-71.
|
[5] |
TAN H, BARRET M, MOOIJ M J, RICE O, MORRISSEY J P, DOBSON A, GRIFFITHS B, O’GARA F. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biology and Fertility of Soils, 2013, 49(6): 661-672.
|
[6] |
CHEN X D, JIANG N, CONDRON L M, DUNFIELD K E, CHEN Z H, WANG J K, CHEN L J. Impact of long-term phosphorus fertilizer inputs on bacterial phoD gene community in a maize field, Northeast China. The Science of the Total Environment, 2019, 669: 1011-1018.
|
[7] |
LIU L, GAO Z Y, YANG Y, GAO Y, MAHMOOD M, JIAO H J, WANG Z H, LIU J S. Long-term high-P fertilizer input shifts soil P cycle genes and microorganism communities in dryland wheat production systems. Agriculture, Ecosystems & Environment, 2023, 342: 108226.
|
[8] |
WEI X M, HU Y J, RAZAVI B S, ZHOU J, SHEN J L, NANNIPIERI P, WU J S, GE T D. Rare taxa of alkaline phosphomonoesterase- harboring microorganisms mediate soil phosphorus mineralization. Soil Biology and Biochemistry, 2019, 131: 62-70.
|
[9] |
WEI X M, HU Y J, CAI G, YAO H Y, YE J, SUN Q, VERESOGLOU S D, LI Y Y, ZHU Z K, GUGGENBERGER G, CHEN X B, SU Y R, LI Y, WU J S, GE T D. Organic phosphorus availability shapes the diversity of phoD-harboring bacteria in agricultural soil. Soil Biology and Biochemistry, 2021, 161: 108364.
|
[10] |
YANG Y, LI T X, WANG Y Q, CHENG H, CHANG S X, LIANG C, AN S S. Negative effects of multiple global change factors on soil microbial diversity. Soil Biology & Biochemistry, 2021, 156: 108229.
|
[11] |
MA Q X, WEN Y, MA J Z, MACDONALD A, HILL P W, CHADWICK D R, WU L H, JONES D L. Long-term farmyard manure application affects soil organic phosphorus cycling: a combined metagenomic and 33P/14C labelling study. Soil Biology and Biochemistry, 2020, 149: 107959.
|
[12] |
TANG S, MA Q X, MARSDEN K A, CHADWICK D R, LUO Y, KUZYAKOV Y, WU L H, JONES D L. Microbial community succession in soil is mainly driven by carbon and nitrogen contents rather than phosphorus and sulphur contents. Soil Biology and Biochemistry, 2023, 180: 109019.
|
[13] |
HU Y J, XIA Y H, SUN Q, LIU K P, CHEN X B, GE T D, ZHU B L, ZHU Z K, ZHANG Z H, SU Y R. Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils. The Science of the Total Environment, 2018, 628/629: 53-63.
|
[14] |
DAI Z M, SU W Q, CHEN H H, BARBERÁN A, ZHAO H C, YU M J, YU L, BROOKES P C, SCHADT C W, CHANG S X, XU J M. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro- ecosystems across the globe. Global Change Biology, 2018, 24(8): 3452-3461.
|
[15] |
|
|
WANG Q, ZHAN X Y, ZHANG S X, PENG C, GAO H J, ZHANG X Z, ZHU P, GILLES C. Phosphorus adsorption and desorption characteristics and its response to soil properties of black soil under long-term different fertilization. Scientia Agricultura Sinica, 2019, 52(21): 3866-3877. doi: 10.3864/j.issn.0578-1752.2019.21.015. (in Chinese)
|
[16] |
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
|
|
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
|
[17] |
TABATABAI M A. Soil enzymes. Methods of soil analysis: Part 2 Microbiological and Biochemical Properties, 1994, 5: 775-833.
|
[18] |
HEDLEY M J, STEWART J W B, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 1982, 46(5): 970-976.
|
[19] |
TIESSEN H, MOIR J O. Characterization of available P by sequential extraction//CARTER M R. Soil Sampling and Methods of Analysis. Boca Raton, Fla, USA: Lewis Publications, 1993: 75-86.
|
[20] |
FIERER N, JACKSON J A, VILGALYS R, JACKSON R B. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology, 2005, 71(7): 4117-4120.
doi: 10.1128/AEM.71.7.4117-4120.2005
pmid: 16000830
|
[21] |
RAGOT S A, KERTESZ M A, BÜNEMANN E K. phoD alkaline phosphatase gene diversity in soil. Applied and Environmental Microbiology, 2015, 81(20): 7281-7289.
doi: 10.1128/AEM.01823-15
pmid: 26253682
|
[22] |
BOLYEN E, RIDEOUT J R, DILLON M R, BOKULICH N A, ABNET C C, AL-GHALITH G A, ALEXANDER H, ALM E J, ARUMUGAM M, ASNICAR F, et. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019, 37: 852-857.
doi: 10.1038/s41587-019-0209-9
pmid: 31341288
|
[23] |
CAUSEY B D. Parametric estimation of the number of classes in a population. Journal of Applied Statistics, 2002, 29(6): 925-934.
|
[24] |
SHANNON C E. A mathematical theory of communication. The Bell System Technical Journal, 1948, 27(3): 379-423.
|
[25] |
CRABOT J, CLAPPE S, DRAY S, DATRY T. Testing the mantel statistic with a spatially-constrained permutation procedure. Methods in Ecology and Evolution, 2019, 10(4): 532-540.
|
[26] |
PERES-NETO P R, LEGENDRE P, DRAY S, BORCARD D. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology, 2006, 87(10): 2614-2625.
|
[27] |
查庆南, 申昊, 李虹颖, 熊启中, 徐刚, 田达, 马超, 李军利, 郜红建, 叶新新. 高磷小麦秸秆提高砂姜黑土磷有效性并促进土壤磷素的转化. 植物营养与肥料学报, 2022, 28(11): 2001-2010.
|
|
ZHA Q N, SHEN H, LI H Y, XIONG Q Z, XU G, TIAN D, MA C, LI J L, GAO H J, YE X X. High-P wheat straw increases the availability and turnover of phosphorus in lime concretion black soil. Journal of Plant Nutrition and Fertilizers, 2022, 28(11): 2001-2010. (in Chinese)
|
[28] |
徐悦, 陈翔, 王擎运, 罗来超, 张朝春, 李金才, 叶新新, 郜红建, 柴如山. 小麦玉米秸秆长期还田对砂姜黑土磷库组成的影响. 农业环境科学学报, 2022, 41(8): 1768-1777.
|
|
XU Y, CHEN X, WANG Q Y, LUO L C, ZHANG C C, LI J C, YE X X, GAO H J, CHAI R S. Effects of long-term wheat and maize straw incorporation on phosphorus fractions in lime concretion black soil. Journal of Agro-Environment Science, 2022, 41(8): 1768-1777. (in Chinese)
|
[29] |
张叶叶, 莫非, 韩娟, 温晓霞, 廖允成. 秸秆还田下土壤有机质激发效应研究进展. 土壤学报, 2021, 58(6): 1381-1392.
|
|
ZHANG Y Y, MO F, HAN J, WEN X X, LIAO Y C. Research progress on the native soil carbon priming after straw addition. Acta Pedologica Sinica, 2021, 58(6): 1381-1392. (in Chinese)
|
[30] |
ZHANG X T, WANG J, FENG X Y, YANG H S, LI Y L, YAKOV K, LIU S P, LI F M. Effects of tillage on soil organic carbon and crop yield under straw return. Agriculture, Ecosystems & Environment, 2023, 354: 108543.
|
[31] |
FRASER T D, LYNCH D H, BENT E, ENTZ M H, DUNFIELD K E. Soil bacterial phoD gene abundance and expression in response toapplied phosphorus and long-term management. Soil Biology and Biochemistry, 2015, 88: 137-147.
|
[32] |
HE F, WANG H, CHEN Q L, YANG B S, GAO Y C, WANG L H. Short-term response of soil enzyme activity and soil respiration to repeated carbon nanotubes exposure. Soil and Sediment Contamination, 2015, 24(3): 250-261.
|
[33] |
WEI X M, GE T D, ZHU Z K, HU Y J, LIU S L, LI Y, WU J S, RAZAVI B S. Expansion of rice enzymatic rhizosphere: temporal dynamics in response to phosphorus and cellulose application. Plant and Soil, 2019, 445(1): 169-181.
|
[34] |
王静, 王磊, 张爱君, 张辉, 张永春. 长期增施有机肥对土壤不同组分有机磷含量及微生物丰度的影响. 生态与农村环境学报, 2020, 36(9): 1161-1168.
|
|
WANG J, WANG L, ZHANG A J, ZHANG H, ZHANG Y C. Effects of long-term organic fertilization on the content of soil organic phosphorus fractions and abundance of soil microorganism. Journal of Ecology and Rural Environment, 2020, 36(9): 1161-1168. (in Chinese)
|
[35] |
CAO N, ZHI M L, ZHAO W Q, PANG J Y, HU W, ZHOU Z G, MENG Y L. Straw retention combined with phosphorus fertilizer promotes soil phosphorus availability by enhancing soil P-related enzymes and the abundance of phoC and phoD genes. Soil and Tillage Research, 2022, 220: 105390.
|
[36] |
FENG M M, ADAMS J M, FAN K K, SHI Y, SUN R B, WANG D Z, GUO X S, CHU H Y. Long-term fertilization influences community assembly processes of soil diazotrophs. Soil Biology and Biochemistry, 2018, 126: 151-158.
|
[37] |
SUN R B, ZHANG X X, GUO X S, WANG D Z, CHU H Y. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry, 2015, 88: 9-18.
|
[38] |
LI J, LI Y T, YANG X D, ZHANG J J, LIN Z A, ZHAO B Q. Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil. Journal of Integrative Agriculture, 2015, 14(12): 2500-2511.
doi: 10.1016/S2095-3119(15)61229-1
|
[39] |
SUN R B, CHEN Y, HAN W X, DONG W X, ZHANG Y M, HU C S, LIU B B, WANG F H. Different contribution of species sorting and exogenous species immigration from manure to soil fungal diversity and community assemblage under long-term fertilization. Soil Biology and Biochemistry, 2020, 151: 108049.
|
[40] |
CHEN W, GAO Y, YANG J, FAN F J, ZHANG W G, LI J Y, ZHOU C, SHI G L, TONG F, FAN G P. Taxonomical and functional bacterial community selection in the rhizosphere of the rice genotypes with different nitrogen use efficiencies. Plant and Soil, 2022, 470(1): 111-125.
|
[41] |
CUI J W, ZHU R L, WANG X Y, XU X P, AI C, HE P, LIANG G Q, ZHOU W, ZHU P. Effect of high soil C/N ratio and nitrogen limitation caused by the long-term combined organic-inorganic fertilization on the soil microbial community structure and its dominated SOC decomposition. Journal of Environmental Management, 2022, 303: 114155.
|
[42] |
FIERER N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 2017, 15: 579-590.
doi: 10.1038/nrmicro.2017.87
pmid: 28824177
|
[43] |
PHILIPPOT L, CHENU C, KAPPLER A, RILLIG M C, FIERER N. The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 2024, 22: 226-239.
|
[44] |
XU L, CAO H L, LI C N, WANG C H, HE N P, HU S Y, YAO M J, WANG C T, WANG J M, ZHOU S G, LI X Z. The importance of rare versus abundant phoD-harboring subcommunities in driving soil alkaline phosphatase activity and available P content in Chinese steppe ecosystems. Soil Biology and Biochemistry, 2021, 164: 108491.
|
[45] |
LIU S, ZHANG X Y, DUNGAIT J A J, QUINE T A, RAZAVI B S. Rare microbial taxa rather than phoD gene abundance determine hotspots of alkaline phosphomonoesterase activity in the Karst rhizosphere soil. Biology and Fertility of Soils, 2021, 57(2): 257-268.
|
[46] |
TIAN J H, KUANG X Z, TANG M T, CHEN X D, HUANG F, CAI Y X, CAI K Z. Biochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community composition. The Science of the Total Environment, 2021, 779: 146556.
|
[47] |
LI J B, XIE T, ZHU H, ZHOU J, LI C N, XIONG W J, XU L, WU Y H, HE Z L, LI X Z. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. Geoderma, 2021, 404: 115376.
|
[48] |
ZENG Q C, MEI T, DELGADO-BAQUERIZO M, WANG M X, TAN W F. Suppressed phosphorus-mineralizing bacteria after three decades of fertilization. Agriculture, Ecosystems & Environment, 2022, 323: 107679.
|
[49] |
WAN W J, HAO X L, XING Y H, LIU S, ZHANG X Y, LI X, CHEN W L, HUANG Q Y. Spatial differences in soil microbial diversity caused by pH-driven organic phosphorus mineralization. Land Degradation & Development, 2021, 32(2): 766-776.
|
[50] |
LIU J S, MA Q, HUI X L, RAN J Y, MA Q X, WANG X S, WANG Z H. Long-term high-P fertilizer input decreased the total bacterial diversity but not phoD-harboring bacteria in wheat rhizosphere soil with available-P deficiency. Soil Biology and Biochemistry, 2020, 149: 107918.
|
[51] |
LIU L, GAO Y, YANG W J, LIU J S, WANG Z H. Community metagenomics reveals the processes of nutrient cycling regulated by microbial functions in soils with P fertilizer input. Plant and Soil, 2024, 499(1): 139-154.
|
[52] |
LIU X, ZHANG Y L, WANG Z, CHEN Z H. The contribution of organic and chemical fertilizers on the pools and availability of phosphorus in agricultural soils based on a meta-analysis. European Journal of Agronomy, 2024, 156: 127144.
|