[1] |
SHIFERAW B, SMALE M, BRAUN H J, DUVEILLER E, REYNOLDS M, MURICHO G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 2013, 5(3): 291-317.
|
[2] |
RAY D K, MUELLER N D, WEST P C, FOLEY J A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 2013, 8(6): e66428.
|
[3] |
LIU Y J, ZHANG J, GE Q S. The optimization of wheat yield through adaptive crop management in a changing climate: Evidence from China. Journal of the Science of Food and Agriculture, 2021, 101(9): 3644-3653.
|
[4] |
SHAH N H, PAULSEN G M. Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and Soil, 2003, 257(1): 219-226.
|
[5] |
ASSENG S, EWERT F, MARTRE P, RÖTTER R P, LOBELL D B, CAMMARANO D, KIMBALL B A, OTTMAN M J, WALL G W, WHITE J W, et al. Rising temperatures reduce global wheat production. Nature Climate Change, 2014, 5(2): 143-147.
|
[6] |
SENAPATI N, STRATONOVITCH P, PAUL M J, SEMENOV M A. Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. Journal of Experimental Botany, 2019, 70(9): 2549-2560.
|
[7] |
景蕊莲, 昌小平, 胡荣海. 冬小麦幼苗根系形态性状及抗旱性的遗传. 遗传, 1998, 20(S1): 91-94.
|
|
JING R L, CHANG X P, HU R H. Inheritance of root morphological characters and drought resistance of winter wheat seedlings. Hereditas (Beijing), 1998, 20(S1): 91-94. (in Chinese)
|
[8] |
VANHOLME B, GRUNEWALD W, BATEMAN A, KOHCHI T, GHEYSEN G. The tify family previously known as ZIM. Trends in Plant Science, 2007, 12(6): 239-244.
|
[9] |
SHIKATA M, MATSUDA Y, ANDO K, NISHII A, TAKEMURA M, YOKOTA A, KOHCHI T. Characterization of Arabidopsis ZIM a member of a novel plant-specific GATA factor gene family. Journal of Experimental Botany, 2004, 55(397): 631-639.
|
[10] |
WHITE D W R. PEAPOD regulates Lamina size and curvature in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(35): 13238-13243.
|
[11] |
DONG K, WU F Q, CHENG S Q, LI S, ZHANG F, XING X X, JIN X, LUO S, FENG M, MIAO R, CHANG Y Q, et al. OsPRMT6a- mediated arginine methylation of OsJAZ 1 regulates jasmonate signaling and spikelet development in rice. Molecular Plant, 2024, 17(6): 900-919.
|
[12] |
SEO J S, JOO J, KIM M J, KIM Y K, NAHM B H, SONG S I, CHEONG J J, LEE J S, KIM J K, CHOI Y D. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. The Plant Journal, 2011, 65(6): 907-921.
|
[13] |
WU H, YE H Y, YAO R F, ZHANG T, XIONG L Z. OsJAZ 9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. Plant Science, 2015, 232: 1-12.
|
[14] |
LIU H X, YAO Y X, MA J Y, WANG S Y, LI S, WANG W W, YU X M, SUN F L, ZHANG C, XI Y J. Wheat TaTIFY3B and TaTIFY10A play roles in seed germination and abiotic stress responses in transgenic Arabidopsis and rice. BMC Plant Biology, 2024, 24(1): 951.
|
[15] |
EBEL C, BENFEKI A, HANIN M, SOLANO R, CHINI A. Characterization of wheat (Triticum aestivum) TIFY family and role of Triticum Durum TdTIFY11a in salt stress tolerance. PLoS ONE, 2018, 13(7): e0200566.
|
[16] |
张自阳, 周谦, 王依, 王志伟, 朱启迪, 茹振钢, 刘明久. 小麦倒春寒响应基因TaJAZ6的克隆、表达模式及亚细胞定位分析. 华北农学报, 2024, 39(1): 27-36.
|
|
ZHANG Z Y, ZHOU Q, WANG Y, WANG Z W, ZHU Q D, RU Z G, LIU M J. Cloning, expression pattern and subcellular localization analysis of late spring cold response gene TaJAZ6 in wheat. Acta Agriculturae Boreali-Sinica, 2024, 39(1): 27-36. (in Chinese)
|
[17] |
梁佳文, 魏铁锁, 樊晓培, 苍晶, 张达. TaJAZ7D蛋白在冬小麦JA抗寒途径中的作用. 麦类作物学报, 2022, 42(11): 1317-1325.
|
|
LIANG J W, WEI T S, FAN X P, CANG J, ZHANG D. Role of TaJAZ7D protein in JA cold-resistance pathway of winter wheat. Journal of Triticeae Crops, 2022, 42(11): 1317-1325. (in Chinese)
|
[18] |
荆叶醒. 小麦TaJAZ1基因的克隆及其调控小麦白粉病抗性机理的研究[D]. 北京: 中国农业科学院, 2019.
|
|
JING Y X. Gene cloning of TaJAZ1 and research on the mechanism of TaJAZ1-regulated resistance against powdery mildew in wheat (Triticum aestivum L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
|
[19] |
陈欣. 小麦TIFY转录因子TaTIFY10b调控籽粒发育的分子机理解析[D]. 北京: 中国农业科学院, 2021.
|
|
CHEN X. Molecular mechanism of wheat TIFY transcription factor TaTIFY10b in regulating grain development[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
|
[20] |
ZHUANG M J, LI C N, WANG J Y, MAO X G, LI L, YIN J, DU Y, WANG X, JING R L. The wheat short root length 1 gene TaSRL1 controls root length in an auxin-dependent pathway. Journal of Experimental Botany, 2021, 72(20): 6977-6989.
|
[21] |
LI L, MAO X G, WANG J Y, CHANG X P, REYNOLDS M, JING R L. Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant, Cell & Environment, 2019, 42(9): 2540-2553.
|
[22] |
LI L, PENG Z, MAO X G, WANG J Y, CHANG X P, REYNOLDS M, JING R L. Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Annals of Botany, 2019, 124(6): 993-1006.
|
[23] |
HAO C Y, WANG L F, GE H M, DONG Y C, ZHANG X Y. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS ONE, 2011, 6(2): e17279.
|
[24] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.
|
[25] |
YU J, ZHANG Y X, DI C, ZHANG Q L, ZHANG K, WANG C C, YOU Q, YAN H, DAI S Y, YUAN J S, XU W Y, SU Z. JAZ 7 negatively regulates dark-induced leaf senescence in Arabidopsis. Journal of Experimental Botany, 2016, 67(3): 751-762.
|
[26] |
HAN X, KUI M Y, HE K R, YANG M L, DU J C, JIANG Y J, HU Y R. Jasmonate-regulated root growth inhibition and root hair elongation. Journal of Experimental Botany, 2023, 74(4): 1176-1185.
|
[27] |
FU J, WU H, MA S Q, XIANG D H, LIU R Y, XIONG L Z. OsJAZ 1 attenuates drought resistance by regulating JA and ABA signaling in rice. Frontiers in Plant Science, 2017, 8: 2108.
|
[28] |
SINGH A P, MANI B, GIRI J. OsJAZ 9 is involved in water-deficit stress tolerance by regulating leaf width and stomatal density in rice. Plant Physiology and Biochemistry, 2021, 162: 161-170.
|
[29] |
王朝亮, 史素英. 灾害性天气对小麦产量的影响. 中国种业, 2012(2): 61-62.
|
|
WANG C L, SHI S Y. Effect of disastrous weather on wheat yield. China Seed Industry, 2012(2): 61-62. (in Chinese)
|
[30] |
刘兵. 生育后期高温胁迫对小麦生长发育及产量形成影响的模拟研究[D]. 南京: 南京农业大学, 2016.
|
|
LIU B. Modelling the effects of heat stress during late growth stage on growth and yield formation in wheat. Nanjing: Nanjing Agricultural University, 2016. (in Chinese)
|
[31] |
XIA C, ZHANG L C, ZOU C, GU Y Q, DUAN J L, ZHAO G Y, WU J J, LIU Y, FANG X H, GAO L F, JIAO Y N, SUN J Q, PAN Y H, LIU X, JIA J Z, KONG X Y. A TRIM insertion in the promoter of Ms2 causes male sterility in wheat. Nature Communications, 2017, 8: 15407.
|
[32] |
TIAN X L, XIA X C, XU D A, LIU Y Q, XIE L, HASSAN M A, SONG J, LI F J, WANG D S, ZHANG Y, et al. Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. New Phytologist, 2022, 233(2): 738-750.
|
[33] |
LI C N, WANG J Y, LI L, LI J L, ZHUANG M J, LI B, LI Q R, HUANG J F, DU Y, WANG J P, FAN Z P, MAO X G, JING R L. TaMOR is essential for root initiation and improvement of root system architecture in wheat. Plant Biotechnology Journal, 2022, 20(5): 862-875.
|
[34] |
WANG J Y, LI L, LI C N, YANG X, XUE Y H, ZHU Z, MAO X G, JING R L. A transposon in the vacuolar sorting receptor gene TaVSR1-B promoter region is associated with wheat root depth at booting stage. Plant Biotechnology Journal, 2021, 19(7): 1456-1467.
|
[35] |
MAO H D, LI S M, WANG Z X, CHENG X X, LI F F, MEI F M, CHEN N, KANG Z S. Regulatory changes in TaSNAC8-6A are associated with drought tolerance in wheat seedlings. Plant Biotechnology Journal, 2020, 18(4): 1078-1092.
|