[1] |
曾晨, 周詹杭, 柯新利, 刘文平, 王真. 全球气候变化下农业可持续发展的研究现状和学科交叉分析. 华中农业大学学报, 2024, 43 (6): 6-16.
|
|
ZENG C, ZHOU Z, KE X, LIU W, WANG Z. Review and interdisciplinary analysis of sustainable development of agriculture in context of global climate change. Journal of Huazhong Agricultural University, 2024, 43 (6): 6-16. (in Chinese)
|
[2] |
KROPP I, NEJADHASHEMI A P, DEB K, ABOUALI M, ROY P C, ADHIKARI U, HOOGENBOOM G. A multi-objective approach to water and nutrient efficiency for sustainable agricultural intensification. Agricultural Systems, 2019, 173: 289-302.
|
[3] |
ZHOU C Q, ZHAO W J, LI H L, MA F, WU K Q. Simulation and evaluation of tomato growth by AquaCrop model under different agricultural waste materials. International Journal of Agricultural and Biological Engineering, 2024, 17(5): 112-119.
|
[4] |
LÜ J Y, JIANG Y N, XU C, LIU Y J, SU Z H, LIU J C, HE J Q. Multi-objective winter wheat irrigation strategies optimization based on coupling AquaCrop-OSPy and NSGA-III: A case study in Yangling, China. Science of The Total Environment, 2022, 843: 157104.
|
[5] |
GROOT J C J, OOMEN G J M, ROSSING W A H. Multi-objective optimization and design of farming systems. Agricultural Systems, 2012, 110: 63-77.
|
[6] |
程杜. 基于代理辅助多目标优化的农业决策系统[D]. 长春: 长春师范大学, 2023.
|
|
CHENG D. Agricultural decision-making system based on agent- assisted multi-objective optimization[D]. Changchun: Changchun Normal University, 2023. (in Chinese)
|
[7] |
YAN Y L, RYU Y, LI B L, DECHANT B, ZAHEER S A, KANG M. A multi-objective optimization approach to simultaneously halve water consumption, CH4, and N2O emissions while maintaining rice yield. Agricultural and Forest Meteorology, 2024, 344: 109785.
|
[8] |
XIAO L, WANG G, WANG E, LIU S, CHANG J, ZHANG P, ZHOU H, WEI Y, ZHANG H, ZHU Y. Spatiotemporal co-optimization of agricultural management practices towards climate-smart crop production. Nature Food, 2024, 5(1): 59-71.
doi: 10.1038/s43016-023-00891-x
pmid: 38168779
|
[9] |
王凯航. 基于AquaCrop-FloPy和NSGA-Ⅲ耦合模型的TK601玉米新品种灌溉制度多目标优化[D]. 杨凌: 西北农林科技大学, 2023.
|
|
WANG K H. Multi-objective optimization of irrigation system for new TK601 maize variety based on AquaCrop-FloPy and NSGA-III coupled model[D]. Yangling: Northwest Agriculture and Forestry University, 2023. (in Chinese)
|
[10] |
王永强. 基于作物模型与遥感数据同化的区域尺度夏玉米生长模拟与灌溉施肥制度优化[D]. 杨凌: 西北农林科技大学, 2023.
|
|
WANG Y Q. Regional-scale summer corn growth simulation and irrigation and fertilization regime optimization based on crop models and remote sensing data assimilation[D]. Yangling: Northwest A & F University, 2023. (in Chinese)
|
[11] |
杜梦寅, 袁建钰, 李广, 闫丽娟, 刘兴宇, 祁小平, 庞晔. 保护性耕作对黄土高原半干旱区农田土壤N2O排放的影响. 干旱区研究, 2022, 39(2): 493-501.
doi: 10.13866/j.azr.2022.02.17
|
|
DU M Y, YUAN J Y, LI G, YAN L J, LIU X Y, QI X P, PANG Y. Effects of conservation tillage on N2O emissions from agricultural soils in the semi-arid zone of the Loess Plateau. Arid Zone Research, 2022, 39(2): 493-501. (in Chinese)
|
[12] |
成思潮, 李广, 姚瑶, 袁建钰, 何锦煜. DNDC模型模拟不同施肥水平下旱作麦田土壤N2O排放及其敏感性分析. 甘肃农业大学学报, 2024, 59(4): 44-54.
|
|
CHENG S C, LI G, YAO Y, YUAN J Y, HE J Y. Simulation and sensitivity analysis of N2O emissions in dryland wheat fields at different fertilization levels using the DNDC model. Journal of Gansu Agricultural University, 2024, 59(4): 44-54. (in Chinese)
|
[13] |
吕凤莲, 杨学云, 赵冉, 单晓玲, 王九军, 郑伟, 张树兰. 静态箱/气相色谱法监测农田温室气体排放研究. 实验技术与管理, 2022, 39(9): 15-24.
|
|
LÜ F L, YANG X Y, ZHAO R, SHAN X L, WANG J J, ZHENG W, ZHANG S L. Research on monitoring greenhouse gas emissions from farmland by static chamber/gas chromatography. Experimental Technology and Management, 2022, 39(9): 15-24. (in Chinese)
|
[14] |
黄少辉. 小麦-玉米轮作体系生态集约化管理下碳氮循环特征研究[D]. 北京: 中国农业科学院, 2021.
|
|
HUANG S H. Characterization of carbon and nitrogen cycling under ecological intensive management of wheat-maize crop rotation system[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
|
[15] |
姚瑶, 李广, 王钧, 杨传杰, 张世康, 刘帅楠. 不同耕作措施下旱作春小麦农田二氧化碳排放模拟及敏感性分析. 干旱地区农业研究, 2021, 39(3): 171-178.
|
|
YAO Y, LI G, WANG J, YANG C J, ZHANG S K, LIU S N. Simulation and sensitivity analysis of carbon dioxide emissions under different tillage systems in dryland spring wheat fields. Agricultural Research in the Arid Areas, 2021, 39(3): 171-178. (in Chinese)
|
[16] |
肖玉涛, 李正鹏, 宋明丹, 韩梅. 基于DNDC模型青海西宁地区春小麦施氮量研究. 中国土壤与肥料, 2024, (3): 87-95.
|
|
XIAO Y T, LI Z P, SONG M D, HAN M. Study on nitrogen application to spring wheat in Xining area of Qinghai based on DNDC model. China Soil and Fertilizer, 2024, (3): 87-95. (in Chinese)
|
[17] |
郝琪, 陈天陆, 王富贵, 王振, 白岚方, 王永强, 王志刚. 基于无人机多光谱数据和氮素空间分异的玉米冠层氮浓度估算. 作物学报, 2025, 51(1): 189-206.
doi: 10.3724/SP.J.1006.2025.43015
|
|
HAO Q, CHEN T L, WANG F G, WANG Z, BAI L F, WANG Y Q, WANG Z G. Estimation of canopy nitrogen concentration in maize based on UAV multi-spectral data and spatial nitrogen heterogeneity. Acta Agronomica Sinica, 2025, 51(1): 189-206. (in Chinese)
doi: 10.3724/SP.J.1006.2025.43015
|
[18] |
王钧, 李广, 聂志刚, 董莉霞, 闫丽娟. 陇中黄土高原区旱地春小麦产量对干旱胁迫响应的模拟研究. 干旱区地理, 2021, 44(2): 494-506.
doi: 10.12118/j.issn.1000–6060.2021.02.20
|
|
WANG J, LI G, NIE Z G, DONG L X, YAN L J. Simulation study on yield response of dryland spring wheat to drought stress in Longzhong Loess Plateau area. Arid Zone Geography, 2021, 44(2): 494-506. (in Chinese)
|
[19] |
聂志刚, 任新庄, 李广, 雒翠萍, 董莉霞, 王钧, 逯玉兰. 旱地小麦产量及其构成因素灌溉效应的模拟分析. 干旱地区农业研究, 2019, 37(3): 117-122.
|
|
NIE Z G, REN X Z, LI G, LUO C P, DONG L X, WANG J, LU Y L. Simulation analysis of irrigation effect on yield andits constitute factors of dryland wheat. Agricultural Research in the Arid Areas, 2019, 37(3): 117-122. (in Chinese)
|
[20] |
李文桦, 明梦君, 张涛, 王锐, 黄生俊, 王凌. 考虑全局和局部帕累托前沿的多模态多目标优化算法. 自动化学报, 2023, 49(1): 148-160.
|
|
LI W H, MING M J, ZHANG T, WANG R, HUANG S J, WANG L. A multimodal multi-objective optimization algorithm considering global and local Pareto frontiers. Journal of Automation, 2023, 49(1): 148-160. (in Chinese)
|
[21] |
JIANG W, ZHU A, WANG C, ZHANG F S, JIAO X Q. Optimizing wheat production and reducing environmental impacts through scientist-farmer engagement: Lessons from the North China Plain. Food and Energy Security, 2021, 10(1): e255.
doi: 10.1002/fes3.255
pmid: 33791100
|
[22] |
LÜ X D, WANG T, MA Z M, ZHAO C Y, SIDDIQUE K H M, JU X T. Enhanced efficiency nitrogen fertilizers maintain yields and mitigate global warming potential in an intensified spring wheat system. Field Crops Research, 2019, 244: 107624.
|
[23] |
LINKER R, SYLAIOS G. Efficient model-based sub-optimal irrigation scheduling using imperfect weather forecasts. Computers and Electronics in Agriculture, 2016, 130: 118-127.
|
[24] |
HUANG X M, XU X P, ZHU Q C, ZHANG Y T. Optimizing water and nitrogen inputs for sustainable wheat yields and minimal environmental impacts. Agricultural Systems, 2024, 220: 104061.
|
[25] |
SONG X T, LIU M, JU X T, GAO B, SU F, CHEN X P, REES R M. Nitrous oxide emissions increase exponentially when optimum nitrogen fertilizer rates are exceeded in the North China Plain. Environmental Science & Technology, 2018, 52(21): 12504-12513.
|
[26] |
YANG Y, TONG Y A, GAO P C, HTUN Y M, FENG T. Evaluation of N2O emission from rainfed wheat field in northwest agricultural land in China. Environmental Science and Pollution Research, 2020, 27(35): 43466-43479.
|
[27] |
PRINA M G, COZZINI M, GAREGNANI G, MANZOLINI G, MOSER D, FILIPPI OBEREGGER U, PERNETTI R, VACCARO R, SPARBER W. Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model. Energy, 2018, 149: 213-221.
|
[28] |
郭乙霏, 张利平, 王纲胜, 尚瑞朝, 张欢, 祝志勇, 王长仲. 耕作方式与水肥组合对小麦-玉米田温室气体排放的影响. 农业工程学报, 2022, 38(13): 95-104.
|
|
GUO Y F, ZHANG L P, WANG G S, SHANG R C, ZHANG H, ZHU Z Y, WANG C Z. Effects of the tillage and combination of water and fertilizer on the greenhouse gas emissions of wheat-maize field. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(13): 95-104. (in Chinese)
|
[29] |
马晨光, 蔡焕杰, 卢亚军. 基于APSIM模型不同水氮处理下N2O的排放研究. 灌溉排水学报, 2020, 39(11): 120-129.
|
|
MA C G, CAI H J, LU Y J. Study on N2O emission under different water nitrogen treatments based on APSIM model. Journal of Irrigation and Drainage, 2020, 39(11): 120-129. (in Chinese)
|
[30] |
ZHANG J, HU K L, LI K J, ZHENG C L, LI B G. Simulating the effects of long-term discontinuous and continuous fertilization with straw return on crop yields and soil organic carbon dynamics using the DNDC model. Soil and Tillage Research, 2017, 165: 302-314.
|
[31] |
张丽霞, 杨永辉, 尹钧, 武继承, 潘晓莹. 水肥一体化对小麦干物质和氮素积累转运及产量的影响. 农业机械学报, 2021, 52(2): 275-282, 319.
|
|
ZHANG L X, YANG Y H, YIN J, WU J C, PAN X Y. Effects of drip fertigation on accumulation and translocation of dry matter and nitrogen together with yield in wheat. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(2): 275-282, 319. (in Chinese)
|
[32] |
ZHAO K Q, ZHAO X C, HE L Q, WANG N Y, BAI M, ZHANG X B, CHEN G, CHEN A W, LUO L, ZHANG J C. Comprehensive assessment of straw returning with organic fertilizer on paddy ecosystems: A study based on greenhouse gas emissions, C/N sequestration, and risk health. Environmental Research, 2025, 266: 120519.
|
[33] |
李越, 李根东, 陈志君, 张雪晨, 黄冠华. 基于氮收支平衡的河套灌区春小麦农田灌溉和施氮策略. 农业工程学报, 2022, 38(17): 61-72.
|
|
LI Y, LI G D, CHEN Z J, ZHANG X C, HUANG G H. Irrigation and nitrogen application strategies for spring wheat farmland in Hetao Irrigation District based on nitrogen balance. Journal of Agricultural Engineering, 2022, 38(17): 61-72. (in Chinese)
|
[34] |
ZHANG X, XIAO G M, BOL R, WANG L G, ZHUGE Y P, WU W L, LI H, MENG F Q. Influences of irrigation and fertilization on soil N cycle and losses from wheat-maize cropping system in northern China. Environmental Pollution, 2021, 278: 116852.
|
[35] |
李长生. 生物地球化学:科学基础与模型方法. 北京: 清华大学出版社, 2016.
|
|
LI C S. Biogeochemistry:Scientific Basis and Modeling Methods. Beijing: Tsinghua University Press, 2016. (in Chinese)
|