中国农业科学 ›› 2025, Vol. 58 ›› Issue (9): 1856-1866.doi: 10.3864/j.issn.0578-1752.2025.09.014

• 畜牧·兽医 • 上一篇    

中红外光谱分析技术在奶牛甲烷排放预测中的应用研究进展

杨国昌1(), 郑月1, 包向男2,3, 代迎春4, 王金刚4, 白雪峰4, 孙伟2, 李喜和2, 张淑君1()   

  1. 1 华中农业大学动科动医学院,武汉 430070
    2 内蒙古赛科星家畜种业与繁育生物技术研究院有限公司,呼和浩特 011517
    3 国家乳业技术创新中心,呼和浩特 010020
    4 赛科星托县牧场,呼和浩特 010200
  • 收稿日期:2024-05-22 接受日期:2025-03-11 出版日期:2025-05-08 发布日期:2025-05-08
  • 通信作者:
    张淑君,Tel:15071338061;E-mail:
  • 联系方式: 杨国昌,Tel:13298128649;E-mail:yangguochang726@webmail.hzau.edu.cn。
  • 基金资助:
    国家乳业技术创新中心项目“低碳排放与抗热应激奶牛培育关键技术研究及奶山羊引种扩繁技术创新项目”(2022-科研攻关-3); 湖北省国际合作项目(2022EHB043)

Research Progress on the Application of Mid-Infrared Spectroscopy Analysis Technology in Predicting Methane Emissions from Cows

YANG GuoChang1(), ZHENG Yue1, BAO XiangNan2,3, DAI YingChun4, WANG JinGang4, BAI XueFeng4, SUN Wei2, LI XiHe2, ZHANG ShuJun1()   

  1. 1 Huazhong Agricultural University, Wuhan 430070
    2 Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517
    3 National Center of Technology Innovation for Dairy Industry, Hohhot 010020
    4 Saikexing Pasture in Togtoh County, Hohhot 010200
  • Received:2024-05-22 Accepted:2025-03-11 Published:2025-05-08 Online:2025-05-08

摘要:

温室气体的排放不仅会导致全球变暖,引起气候系统发生变化,还可能对臭氧层造成损害,进而加剧温室效应。甲烷气体的排放总量虽然不如二氧化碳气体,在大气中停留时间也较短,但其具有更高的全球增温潜势,是一种极具威胁性的温室气体。畜牧业是人类活动甲烷气体排放的主要来源,其中奶牛的甲烷排放量占据了近五分之一的比例。在这一背景下,测量奶牛个体甲烷排放量变得至关重要。通过了解每头奶牛产生的甲烷排放量可以帮助人类识别出高排放量的奶牛个体,并采取更有针对性的措施来减少排放。因此需要便捷高通量的奶牛甲烷排放测定技术,但如呼吸室、六氟化硫气体示踪技术等传统的甲烷测定技术费时费力且成本高昂,不利于大批量单个奶牛甲烷排放水平的监测。基于奶牛的性状指标组合去预测奶牛的甲烷排放性状水平是一种可行的替代方法, 当前已开发了众多基于奶牛能量摄入、干物质采食量和摄入日粮组成等预测因子的奶牛甲烷预测方程, 但这些预测因子在商业牧场同样难以收集,限制了这些方程在大规模应用中的可行性。考虑到奶牛牛奶的中红外光谱信息可以从奶牛生产性能的常规测定中大批量低成本获取, 在过去十几年中, 国外研究人员一直在对基于牛奶的中红外光谱信息预测奶牛甲烷排放的可行性进行探究,已确认基于牛奶的中红外光谱预测奶牛的甲烷排放量是可行的,具有很强的生物学合理性和中等的预测精度,而我国在这方向的研究还未起步。本文阐述了利用牛奶的中红外光谱信息预测奶牛甲烷排放量的研究现状,强调了未来研究中仍需关注的重点和难点,总结了不同研究在奶牛甲烷排放衡量指标、甲烷性状观测值测定方法、中红外光谱的收集、建模方法与验证策略等方面采取策略的不同, 以期为我国科研人员开展相关研究提供参考。

关键词: 奶牛, 中红外光谱, 甲烷排放, 预测模型

Abstract:

The emission of greenhouse gases not only leads to global warming and changes in the climate system but also may cause damage to the ozone layer, thereby exacerbating the greenhouse effect. Although the total emissions of methane gas are not as high as carbon dioxide gas, and its residence time in the atmosphere is relatively short, it possesses a higher global warming potential, making it a highly threatening greenhouse gas. Livestock farming is a major source of anthropogenic methane gas emissions, with the methane emissions from cows accounting for nearly one-fifth of the total proportion. Given this context, the measurement of individual cow methane emissions becomes crucial. Understanding the methane emissions produced by each cow can help identify cows with high emissions and implement more targeted measures to reduce emissions. Therefore, there is a need for convenient high-throughput technologies for measuring cow methane emissions. Traditional methane measurement techniques, such as respiration chambers and sulfur hexafluoride gas tracing technology, are time-consuming, labor-intensive, and costly, which hinders the monitoring of methane emissions on a large scale for individual cows. Using a combination of cow trait indicators to predict the methane emission characteristics of cows is a feasible alternative method. Numerous methane prediction equations based on factors, such as cow energy intake, dry matter intake, and daily feed composition, have been developed. However, these prediction factors are also challenging to collect on commercial farms, limiting the feasibility of these equations for large-scale applications. Considering that mid-infrared spectroscopic information of cow milk can be obtained in bulk and at low cost from routine cow production performance assessments, foreign researchers have been exploring the feasibility of predicting cow methane emissions based on mid-infrared spectroscopic information from cow milk over the past decade. It has been confirmed that using mid-infrared spectroscopy to predict cow methane emissions is feasible, biologically plausible, and moderately accurate. However, the researchers in this area have not yet begun in China. This paper elaborated on the current research status of predicting cow methane emissions using mid-infrared spectroscopic information from cow milk and emphasized the key points and challenges that need to be addressed in future research. It summarized the different strategies adopted by various studies in terms of cow methane emission measurement indicators, methane phenotype observation value determination methods, mid-infrared spectroscopy data collection, modeling methods, and validation strategies, aiming to provide insights for Chinese researchers conducting related studies.

Key words: dairy cattle, mid infrared spectroscopy, methane emissions, prediction model