[1] |
HOOSHMANDABBASI R, ZERBE H, BAUERSACHS S, DE SOUSA N M, BOOS A, KLISCH K. Pregnancy-associated glycoproteins in cows with retained fetal membranes. Theriogenology, 2018, 105: 158-163.
doi: S0093-691X(17)30462-4
pmid: 28982025
|
[2] |
于程, 汤兆学. 奶牛胎衣不下的病因、临床症状和防治措施. 现代畜牧科技, 2018(3): 63.
|
|
YU C, TANG Z X. Etiology, clinical symptoms and prevention measures of retained placenta in dairy cows. Modern Animal Husbandry Science & Technology, 2018(3): 63. (in Chinese)
|
[3] |
GOHARY K, LEBLANC S J. Cost of retained fetal membranes for dairy herds in the United States. Journal of the American Veterinary Medical Association, 2018, 252(12): 1485-1489.
doi: 10.2460/javma.252.12.1485
pmid: 29889640
|
[4] |
POHL A, BURFEIND O, HEUWIESER W. The associations between postpartum serum haptoglobin concentration and metabolic status, calving difficulties, retained fetal membranes, and metritis. Journal of Dairy Science, 2015, 98(7): 4544-4551.
doi: 10.3168/jds.2014-9181
pmid: 25912860
|
[5] |
KUMARI S, PRASAD S, KUMARESAN A, MANIMARAN A, PATBANDHA T K, PATHAK R, BORO P, MOHANTY T K, RAVI S K. Risk factors and impact of retained fetal membranes on performance of dairy bovines reared under subtropical conditions. Tropical Animal Health and Production, 2015, 47(2): 285-290.
doi: 10.1007/s11250-014-0717-z
pmid: 25377506
|
[6] |
BARTEL D P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297.
doi: 10.1016/s0092-8674(04)00045-5
pmid: 14744438
|
[7] |
QU Y, FADDEN A N, TRABER M G, BOBE G. Potential risk indicators of retained placenta and other diseases in multiparous cows. Journal of Dairy Science, 2014, 97(7): 4151-4165.
doi: 10.3168/jds.2013-7154
pmid: 24792789
|
[8] |
DERVISHI E, ZHANG G S, HAILEMARIAM D, DUNN S M, AMETAJ B N. Occurrence of retained placenta is preceded by an inflammatory state and alterations of energy metabolism in transition dairy cows. Journal of Animal Science and Biotechnology, 2016, 7(1): 26.
|
[9] |
RAPACZ-LEONARD A, DĄBROWSKA M, JANOWSKI T. Major histocompatibility complex I mediates immunological tolerance of the trophoblast during pregnancy and may mediate rejection during parturition. Mediators of Inflammation, 2014, 2014: 579279.
|
[10] |
DILLY M, HAMBRUCH N, SHENAVAI S, SCHULER G, FROEHLICH R, HAEGER J D, OZALP G R, PFARRER C. Expression of matrix metalloproteinase (MMP)-2, MMP-14 and tissue inhibitor of matrix metalloproteinase (TIMP)-2 during bovine placentation and at term with or without placental retention. Theriogenology, 2011, 75(6): 1104-1114.
doi: 10.1016/j.theriogenology.2010.11.019
pmid: 21247626
|
[11] |
HANSEN P J. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Maternal immunological adjustments to pregnancy and parturition in ruminants and possible implications for postpartum uterine health: Is there a prepartum-postpartum nexus? 1. Journal of Animal Science, 2013, 91(4): 1639-1649.
doi: 10.2527/jas.2012-5934
pmid: 23307838
|
[12] |
ATTUPURAM N M, KUMARESAN A, NARAYANAN K, KUMAR H. Cellular and molecular mechanisms involved in placental separation in the bovine: A review. Molecular Reproduction and Development, 2016, 83(4): 287-297.
doi: 10.1002/mrd.22635
pmid: 26970238
|
[13] |
GROSS T S, WILLIAMS W F. Bovine placental prostaglandin synthesis: principal cell synthesis as modulated by the binucleate cell. Biology of Reproduction, 1988, 38(5): 1027-1034.
pmid: 3165677
|
[14] |
WANG Y H, WU N, PANG B, TONG D D, SUN D L, SUN H M, ZHANG C Y, SUN W J, MENG X N, BAI J, CHEN F, GENG J S, FU S B, JIN Y. TRIB1 promotes colorectal cancer cell migration and invasion through activation MMP-2 via FAK/Src and ERK pathways. Oncotarget, 2017, 8(29): 47931-47942.
doi: 10.18632/oncotarget.18201
pmid: 28624785
|
[15] |
LEŚNIAK-WALENTYN A, HRABIA A. Expression and localization of matrix metalloproteinases (MMP-2, -7, -9) and their tissue inhibitors (TIMP-2, -3) in the chicken oviduct during maturation. Cell and Tissue Research, 2016, 364(1): 185-197.
|
[16] |
邢菲菲, 罗胜缤, 温小庆, 曹一鸣, 李美娟, 罗春海, 付世新. NEFA经MMPs途径对奶牛子宫内膜上皮细胞Ⅳ型胶原蛋白表达的影响. 中国兽医学报, 2022, 42(11): 2250-2255.
|
|
XING F F, LUO S B, WEN X Q, CAO Y M, LI M J, LUO C H, FU S X. Effects of NEFA on expression of type Ⅳ collagen in endometrial epithelial cells of dairy cows via MMPs pathway. Chinese Journal of Veterinary Science, 2022, 42(11): 2250-2255. (in Chinese)
|
[17] |
DUMITRU C S, RAICA M. Vascular endothelial growth factor family and head and neck squamous cell carcinoma. Anticancer Research, 2023, 43(10): 4315-4326.
|
[18] |
陈艳, 蔺婷, 向福兰, 周芳亮, 何迎春. VEGFA对肿瘤发生发展的作用及其机制的研究进展. 现代医学, 2023, 51(9): 1345-1352.
|
|
CHEN Y, LIN T, XIANG F L, ZHOU F L, HE Y C. Research progress on the role of VEGFA in tumor occurrence and development and its mechanism. Modern Medical Journal, 2023, 51(9): 1345-1352. (in Chinese)
|
[19] |
CONNOLLY D T, HEUVELMAN D M, NELSON R, OLANDER J V, EPPLEY B L, DELFINO J J, SIEGEL N R, LEIMGRUBER R M, FEDER J. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. Journal of Clinical Investigation, 1989, 84(5): 1470-1478.
doi: 10.1172/JCI114322
pmid: 2478587
|
[20] |
ROSKOSKI R. ERK1/ 2 MAP kinases: Structure, function, and regulation. Pharmacological Research, 2012, 66(2): 105-143.
|
[21] |
KAMADA H, MATSUI Y, SAKURAI Y, TANIGAWA T, ITOH M, KAWAMOTO S, KAI K, SASAKI T, TAKAHASHI K, HAYASHI M, TAKAYAMA Y, NAKAMURA M, KADOKAWA H, UEDA Y, SUTOH M, MURAI M. Twelve oxo-eicosatetraenoic acid induces fetal membrane release after delivery in cows. Placenta, 2012, 33(2): 106-113.
doi: 10.1016/j.placenta.2011.11.001
pmid: 22118869
|
[22] |
郑程远. 胎衣不下奶牛母体胎盘组织差异表达microRNA的筛选及验证[D]. 大庆: 黑龙江八一农垦大学, 2015.
|
|
ZHENG C Y. Filter and verify differential expresseion of microRNAs in the maternal placenta of cattle with retained foetal membranes[D]. Daqing: Heilongjiang Bayi Agricultural University, 2015. (in Chinese)
|
[23] |
邹晓. MiRNA-185调控VEGFA/STIM1表达与奶牛胎衣不下的关系[D]. 大庆: 黑龙江八一农垦大学, 2016.
|
|
ZOU X. The relationship between miRNA-185 regulates VEGFA/ STIM1 genes and the cattle with retained foetal membranes[D]. Daqing: Heilongjiang Bayi Agricultural University, 2016. (in Chinese)
|
[24] |
AMIN Y A, HUSSEIN H A. Latest update on predictive indicators, risk factors and ‘Omic’ technologies research of retained placenta in dairy cattle - A review. Reprod Domest Anim, 2022, 57(7): 687-700.
|
[25] |
JAGLAN K, DHAKA S S, MAGOTRA A, PATIL C S, GHANGHAS A. Exploring microRNA biogenesis, applications and bioinformatics analysis in livestock: a comprehensive review. Reproduction in Domestic Animals, 2024, 59(1): e14529.
|
[26] |
陈玉梅, 张聪聪, 胡丽蓉, 房浩, 窦金焕, 郭刚, 王炎, 刘巧香, 王雅春, 徐青. 热应激对奶牛GNAS启动子区DNA甲基化水平的影响. 中国农业科学, 2023, 56(12): 2395-2406.
doi: 10.3864/j.issn.0578-1752.2023.12.013
|
|
CHEN Y M, ZHANG C C, HU L R, FANG H, DOU J H, GUO G, WANG Y, LIU Q X, WANG Y C, XU Q. Effect of heat stress on DNA methylation of GNAS promoter region in dairy cows. Scientia Agricultura Sinica, 2023, 56(12): 2395-2406. (in Chinese)
|
[27] |
LIU M Z, CHEN J H, ZHANG C L, LIU S H, CHAO X H, YANG H, MUHAMMAD A, ZHOU B, AO W P, SCHINCKEL A P. Deciphering estrus expression in gilts: The role of alternative polyadenylation and LincRNAs in reproductive transcriptomics. Animals, 2024, 14(5): 791.
|
[28] |
PANG X L, LI J, WANG J, YAN S S, YANG J. MiR-142-3p regulates ILC1s by targeting HMGB1 via the NF-κB pathway in a mouse model of early pregnancy loss. Current Medical Science, 2024, 44(1): 195-211.
|
[29] |
郑程远. miRNA-185调控VEGFA信号通路影响奶牛胎衣不下的分子机制[D]. 大庆: 黑龙江八一农垦大学, 2018.
|
|
ZHENG C Y. miRNA-185 regulates the VEGFA signaling pathway in dairy cows with retained fetal membranes[D]. Daqing: Heilongjiang Bayi Agricultural University, 2018. (in Chinese)
|
[30] |
GRZESIAK M, KAMINSKA K, KNAPCZYK-STWORA K, HRABIA A. The expression and localization of selected matrix metalloproteinases (MMP-2, -7 and-9) and their tissue inhibitors (TIMP-2 and -3) in follicular cysts of sows. Theriogenology, 2022, 185: 109-120.
|
[31] |
TANAKA N, SAKAMOTO T. MT1-MMP as a key regulator of metastasis. Cells, 2023, 12(17): 2187.
|