[1] |
DE GROOTE G. A comparison of a new net energy system with the metabolisable energy system in broiler diet formulation, performance and profitability. British Poultry Science, 1974, 15(1): 75-95.
doi: 10.1080/00071667408416082
|
[2] |
MILGEN J V, NOBLET J, DUBOIS S, CHWALIBOG A, JAKOBSEN K. Energetic efficiency of nutrient utilization in growing pigs. Energy Metabolism in Animals Symposium on Energy Metabolism in Animals, 2001.
|
[3] |
邹轶, 张小凤, 刘松柏, 彭运智, 呙于明, 谭会泽. 净能体系在肉鸡应用中的研究进展. 中国畜牧兽医, 2019, 46(11): 3270-3276.
doi: 10.16431/j.cnki.1671-7236.2019.11.016
|
|
ZOU Y, ZHANG X F, LIU S B, PENG Y Z, GUO Y M, TAN H Z. Research advances of net energy application for broiler production. China Animal Husbandry & Veterinary Medicine, 2019, 46(11): 3270-3276. (in Chinese)
|
[4] |
KERR B J, SOUTHERN L L, BIDNER T D, FRIESEN K G, EASTER R A. Influence of dietary protein level, amino acid supplementation, and dietary energy levels on growing-finishing pig performance and carcass composition. Journal of Animal Science, 2003, 81(12): 3075-3087.
doi: 10.2527/2003.81123075x
pmid: 14677864
|
[5] |
KLIS J, KWAKERNAAK C, JANSMAN A, BLOK M. Energy in poultry diets: adjusted AME or net energy. Proceedings of the 21st Annual Australian Poultry Science Sumposium, Sydney, New South Wales, 2010.
|
[6] |
WOYENGO T A, JHA R, BELTRANENA E, PHARAZYN A, ZIJLSTRA R T. Nutrient digestibility of lentil and regular- and low-oligosaccharide, micronized full-fat soybean fed to grower pigs. Journal of Animal Science, 2014, 92(1): 229-237.
doi: 10.2527/jas.2013-6555
pmid: 24167001
|
[7] |
NOBLET J, DUBOIS S, LASNIER J, WARPECHOWSKI M, DIMON P, CARRÉ B, VAN MILGEN J, LABUSSIÈRE E. Fasting heat production and metabolic BW in group-housed broilers. Animal, 2015, 9(7): 1138-1144.
doi: 10.1017/S1751731115000403
pmid: 25772629
|
[8] |
NING D, YUAN J M, WANG Y W, PENG Y Z, GUO Y M. The net energy values of corn, dried distillers grains with solubles and wheat bran for laying hens using indirect calorimetry method. Asian-Australasian Journal of Animal Sciences, 2014, 27(2): 209-216.
doi: 10.5713/ajas.2013.13243
pmid: 25049945
|
[9] |
LABUSSIÈRE E, VAN MILGEN J, DE LANGE C F M, NOBLET J. Maintenance energy requirements of growing pigs and calves are influenced by feeding level. The Journal of Nutrition, 2011, 141(10): 1855-1861.
doi: 10.3945/jn.111.141291
|
[10] |
LIU W, LIN C H, WU Z K, LIU G H, YAN H J, YANG H M, CAI H Y. Estimation of the net energy requirement for maintenance in broilers. Asian-Australasian Journal of Animal Sciences, 2017, 30(6): 849-856.
doi: 10.5713/ajas.16.0484
pmid: 27764918
|
[11] |
RIVERA-TORRES V, NOBLET J, DUBOIS S, VAN MILGEN J. Energy partitioning in male growing turkeys. Poultry Science, 2010, 89(3): 530-538.
doi: 10.3382/ps.2009-00353
|
[12] |
BOEKHOLT H A, VAN DER GRINTEN P, SCHREURS V V A M, LOS M J N, LEFFERING C P. Effect of dietary energy restriction on retention of protein, fat and energy in broiler chickens. British Poultry Science, 1994, 35(4): 603-614.
pmid: 7828016
|
[13] |
ZANCANELA V, MARCATO S M, FURLAN A C, GRIESER D O, TON A P S, BATISTA E, PERINE T P, DEL VESCO A P, POZZA P C. Models for predicting energy requirements in meat quail. Livestock Science, 2015, 171: 12-19.
doi: 10.1016/j.livsci.2014.10.002
|
[14] |
YANG T, YU L X, WEN M, ZHAO H, CHEN X L, LIU G M, TIAN G, CAI J Y, JIA G. Modeling net energy requirements of 2 to 3-week-old Cherry Valley ducks. Asian-Australasian Journal of Animal Sciences, 2020, 33(10): 1624-1632.
doi: 10.5713/ajas.19.0561
pmid: 32054198
|
[15] |
FILHO J J, SILVA J H V, SILVA C T, COSTA F, DE SOUSA J M B, GIVISIEZ P. Energy requirement for maintenance and gain for two genotypes of quails housed in different breeding rearing systems. Revista Brasileira de Zootecnia, 2011.
|
[16] |
SILVA E P, CASTIBLANCO D M C, ARTONI S M B, LIMA M B, NOGUEIRA H S, SAKOMURA N K. Metabolisable energy partition for Japanese quails. Animal, 2020, 14: s275-s285.
doi: 10.1017/S1751731120001445
|
[17] |
SAKOMURA N K, LONGO F A, OVIEDO-RONDON E O, BOA-VIAGEM C, FERRAUDO A. Modeling energy utilization and growth parameter description for broiler chickens 1. Poultry Science, 2005, 84(9): 1363-1369.
pmid: 16206556
|
[18] |
SAKOMURA N, SILVA R, COUTO H, COON C, PACHECO C. Modeling metabolizable energy utilization in broiler breeder pullets. Poultry Science, 2003, 82(3): 419-427.
pmid: 12705403
|
[19] |
LOPEZ G, LEESON S. Utilization of metabolizable energy by young broilers and birds of intermediate growth rate. Poultry Science, 2005, 84(7): 1069-1076.
pmid: 16050124
|
[20] |
RABELLO C B V, SAKOMURA N K, LONGO F A, COUTO H P, PACHECO C R, FERNANDES J B K. Modelling energy utilisation in broiler breeder hens. British Poultry Science, 2006, 47(5): 622-631.
pmid: 17050108
|
[21] |
GOUS R M. Modeling as a research tool in poultry science. Poultry Science, 2014, 93(1): 1-7.
doi: 10.3382/ps.2013-03466
pmid: 24570415
|
[22] |
NIETO R, PRIETO C, FERNÁNDEZ-FÍGARES I, AGUILERA J F. Effect of dietary protein quality on energy metabolism in growing chickens. The British Journal of Nutrition, 1995, 74(2): 163-172.
doi: 10.1079/BJN19950120
|
[23] |
BRAINER M M A, RABELLO C B V, SANTOS M J B, LOPES C C, LUDKE J V, SILVA J H V, LIMA R A. Prediction of the metabolizable energy requirements of free-range laying hens. Journal of Animal Science, 2016, 94(1): 117-124.
doi: 10.2527/jas.2015-9272
pmid: 26812318
|
[24] |
于叶娜, 贾刚, 王康宁. 1-21日龄黄羽肉鸡净能需要量及其真可消化赖氨酸与净能适宜比例的研究. 动物营养学报, 2010, 22(6): 1536-1543.
|
|
YU Y N, JIA G, WANG K N. Requirement of net energy and appropriate ratio of true digestive lysine to net energy for yellow- feathered broilers aged 1 to 21 days. Chinese Journal of Animal Nutrition, 2010, 22(6): 1536-1543. (in Chinese)
|
[25] |
朱中胜. 皖南三黄鸡能量和蛋白质需要量研究[D]. 合肥: 安徽农业大学, 2016.
|
|
ZHU Z S. Study on energy and protein requirement of Sanhuang chicken in southern Anhui Province[D]. Hefei: Anhui Agricultural University, 2016. (in Chinese)
|
[26] |
李龙. 清远麻鸡生长规律与能量需要模型研究[D]. 广州: 华南农业大学, 2020.
|
|
LI L. Study on growth law and energy requirement model of Qingyuan ma chicken[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese)
|
[27] |
LATSHAW J D, MORITZ J S. The partitioning of metabolizable energy by broiler chickens. Poultry Science, 2009, 88(1): 98-105.
doi: 10.3382/ps.2008-00161
pmid: 19096063
|
[28] |
NOURMOHAMMADI R, KHOSRAVINIA H, AFZALI N. Effects of feed form and xylanase supplementation on metabolizable energy partitioning in broiler chicken fed wheat-based diets. Journal of Animal Physiology and Animal Nutrition, 2018, 102(6): 1593-1600.
doi: 10.1111/jpn.12980
pmid: 30151983
|
[29] |
LONGO F A, SAKOMURA N K, RABELLO C BV, FIGUEIREDO A N, FERNANDES J B K. Exigências energéticas para mantença e para o crescimento de frangos de corte. Revista Brasileira de Zootecnia, 2006, 35(1): 119-125.
doi: 10.1590/S1516-35982006000100015
|
[30] |
SCOTT M L, NESHEIM M C, YOUNG R J. Nutrition of the chicken. 3rd ed, Ithaca, NY: Scott & Associates, 1982.
|
[31] |
杨志刚. 肉仔鸡氨基酸营养需要仿真模型的研究[D]. 北京: 中国农业科学院, 2010.
|
|
YANG Z G. Study on simulation model of amino acid nutritional requirements of broilers[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese)
|
[32] |
CLOSE W. The evaluation of feeds through calorimetry studies. Feedstuff Evaluation, 1990.
|
[33] |
BLAXTER K L. Energy metabolism in animals and man. Cambridge: Cambridge University Press, 1989.
|