中国农业科学 ›› 2021, Vol. 54 ›› Issue (12): 2510-2522.doi: 10.3864/j.issn.0578-1752.2021.12.003
赵子麒1(),赵雅琪1(),林昌朋1,赵永泽1,余宇潇1,孟庆立2,曾广莹3,薛吉全1,杨琴1()
收稿日期:
2020-11-02
接受日期:
2020-12-29
出版日期:
2021-06-16
发布日期:
2021-06-24
通讯作者:
杨琴
作者简介:
赵子麒,E-mail:基金资助:
ZHAO ZiQi1(),ZHAO YaQi1(),LIN ChangPeng1,ZHAO YongZe1,YU YuXiao1,MENG QingLi2,ZENG GuangYing3,XUE JiQuan1,YANG Qin1()
Received:
2020-11-02
Accepted:
2020-12-29
Online:
2021-06-16
Published:
2021-06-24
Contact:
Qin YANG
摘要:
【目的】结合已克隆抗病基因的分子标记,对来自陕A群、陕B群的30份核心自交系和18份国内外优良种质进行抗病性鉴定,为玉米抗病育种奠定基础。【方法】2019年、2020年分别在陕西省不同地点开展茎腐病、穗腐病、大斑病和小斑病的田间接种鉴定,以及灰斑病的田间自然发病鉴定。试验采用随机区组设计,每个试验设置2—3个重复。采用苗期高粱粒接种法接种大斑病和小斑病,在乳熟后期,对大斑病、小斑病和灰斑病进行病情分级鉴定;在玉米抽雄期,采用土埋伤根法接种禾谷镰孢茎腐病,生理成熟后进行劈茎调查;采用花丝通道和针刺果穗接种法,分2次接种禾谷镰孢穗腐病,玉米生理成熟后进行调查。分别计算不同病害病情指数的最佳线性无偏预测(best linear unbiased predictions,BLUPs),并分析两两病害之间的相关性。对已克隆抗病基因进行功能分子标记基因型鉴定。【结果】对48份自交系开展5种病害田间鉴定,筛选到9份高抗大斑病自交系、2份高抗小斑病自交系、10份抗灰斑病自交系、5份高抗禾谷镰孢茎腐病自交系和5份抗禾谷镰孢穗腐病自交系。1145、CML170、KA103等8份自交系兼抗3种叶斑病。对5种病害综合抗性表现优良的材料有7份,包括1145、CML170、KA105、KB020、X178、沈137和郑58。5种病害相关性分析发现,禾谷镰孢茎腐病与3种叶斑病抗性呈极显著正相关,与穗腐病抗性无相关性。对已知抗病基因鉴定表明,1145、KA081和沈137携带抗禾谷镰孢茎腐病的qRfg1位点,KB109携带抗炭疽茎腐病的Rcg1位点,带有抗大斑病基因Htn1和多抗小斑病、灰斑病基因ZmCCoAOMT2的材料较多。【结论】1145、CML170、KA105、KB020、X178、沈137和郑58对5种病害综合抗性表现良好,可作为供体亲本进行自交系的综合抗性改良。沈137携带抗病的qRfg1、Htn1和ZmCCoAOMT2等位基因,可用于分子标记辅助改良。
赵子麒,赵雅琪,林昌朋,赵永泽,余宇潇,孟庆立,曾广莹,薛吉全,杨琴. 48份玉米自交系抗病性的精准鉴定[J]. 中国农业科学, 2021, 54(12): 2510-2522.
ZHAO ZiQi,ZHAO YaQi,LIN ChangPeng,ZHAO YongZe,YU YuXiao,MENG QingLi,ZENG GuangYing,XUE JiQuan,YANG Qin. Precise Evaluation of 48 Maize Inbred Lines to Major Diseases[J]. Scientia Agricultura Sinica, 2021, 54(12): 2510-2522.
表1
玉米大斑病、小斑病、灰斑病、穗腐病及茎腐病病情级别与抗性评价"
大斑病 Northern leaf blight | 小斑病 Southern leaf blight | 灰斑病 Gray leaf spot | 禾谷镰孢穗腐病 Gibberella ear rot | 禾谷镰孢茎腐病 Gibberella stalk rot | |||||
---|---|---|---|---|---|---|---|---|---|
感病面积 Diseased area (%) | 抗性评价 Disease level | 病情分级 Disease scale | 抗性评价 Disease level | 病情分级 Disease scale | 抗性评价 Disease level | 感病面积 Diseased area (%) | 抗性评价 Disease level | 病情分级 Disease scale | 抗性评价 Disease level |
0—10 | HR | 1—2 | HR | 1—2 | HR | 0—1 | HR | 1—2 | HR |
10—25 | R | 2—3 | R | 2—3 | R | 1—10 | R | 2—3 | R |
25—40 | MR | 3—4 | MR | 3—4 | MR | 10—25 | MR | 3—5 | MR |
40—65 | S | 4—5 | S | 4—5 | S | 25—50 | S | 5—7 | S |
65—100 | HS | 5—9 | HS | 5—9 | HS | 50—100 | HS | 7—9 | HS |
表2
已克隆抗病基因鉴定引物"
基因名称 Gene ID | 病害 Disease | 引物名称 Primer name | 引物序列 Primer sequence (5′-3′) |
---|---|---|---|
qRfg1 | 禾谷镰孢茎腐病 Gibberella stalk rot | TED-F | GCACAAGAGAGATGGAGCATT |
TED-R | ATTCTCAATCCAAGGTGCAG | ||
TERB-F | CCTAAGAACCGTCGGAAACA | ||
TERB-R | CGAGCGTTTTCGACATAACA | ||
TELB-F | AAACGCTGACACTTCCGACT | ||
TELB-R | GTCGACACGTGTAGGAAGCA | ||
Rcg1 | 炭疽茎腐病 Anthracnose stalk rot | FLP-111-F | TTCCTGTTCGTCTGTATCTGATCCG |
FLP-111-R | TTTGATTCCGGTCGAGTATAACCTG | ||
FLP-112-F | GAAACTGCCTTCCCAGAAAACAATG | ||
FLP-112-R | CAAGATCGGTGAAGTTGGTGCTTC | ||
FLP-113-F | ATCACAGATGGGTCTCAAGGATTGC | ||
FLP-A1-R | TTCCAAGCAATTCACAGCTC | ||
Htn1 | 大斑病 Northern leaf blight | Htn1-F | TCTTCTCCCCGCCATGGC |
Htn1-R | CGGTGTAGCCGCAGGAGT | ||
ZmCCoAOMT2 | 小斑病、灰斑病 Southern leaf blight, Gray leaf spot | CAMT-F | CCGTCCTGGACGACCTCGTG |
CAMT-R | TGCTGCGCGTCGTCTACGAT |
表3
48份玉米自交系对不同病害抗性方差组分分析"
病害 Disease | 随机因子 Random factor | 方差估计值(标准误) Estimate (standard error) | P值 P value | 固定因子 Fixed factor | F测验 F test |
---|---|---|---|---|---|
大斑病 Northern leaf blight | 重复Rep. (Env.) | 0.00 | NS | 基因型Genotype | 4.98*** |
环境Env. | 26.17(39.43) | NS | |||
基因型与环境互作 Genotype×Env. | 51.55(17.12) | 0.0038 | |||
散粉期DTA | 0.00 | NS | |||
残差Residual | 55.86(8.24) | ||||
小斑病 Southern leaf blight | 重复Rep. (Env.) | 0.01(0.01) | NS | 基因型Genotype | 11.89*** |
环境Env. | 0.00 | NS | |||
基因型与环境互作 Genotype×Env. | 0.11(0.04) | 0.0047 | |||
散粉期DTA | 0.00 | NS | |||
残差Residual | 0.20(0.02) | ||||
灰斑病 Gray leaf spot | 重复Rep. (Env.) | 0.00 | NS | 基因型Genotype | 3.42*** |
环境Env. | 0.00 | NS | |||
基因型与环境互作 Genotype×Env. | 0.18(0.08) | 0.0093 | |||
残差Residual | 0.33(0.05) | ||||
禾谷镰孢菌茎腐病Gibberella stalk rot | 重复Rep. (Env.) | 0.33(0.25) | NS | 基因型Genotype | 4.44*** |
环境Env. | 0.93(1.14) | NS | |||
基因型与环境互作 Genotype×Env. | 1.31(0.27) | <0.0001 | |||
残差Residual | 0.89(0.10) | ||||
禾谷镰孢穗腐病Gibberella ear rot | 重复Rep. (Env.) | 25.06(22.14) | NS | 基因型Genotype | 1.01 |
环境Env. | 20.41(41.66) | NS | |||
基因型与环境互作 Genotype×Env. | 302.13(74.24) | <0.0001 | |||
残差Residual | 239.63(30.51) |
表4
玉米自交系对5种病害的抗性表现"
自交系 Inbred line | 类群划分 Sub-group | 大斑病 Northern leaf blight | 小斑病 Southern leaf blight | 灰斑病 Gray leaf spot | 禾谷镰孢茎腐病 Gibberella stalk rot | 禾谷镰孢穗腐病 Gibberella ear rot |
---|---|---|---|---|---|---|
1145 | P78599 | HR | R | R | HR | MR |
2082 | NSSS | R | R | MR | R | MR |
AMD43 | NSSS | S | HS | HS | HS | S |
B110 | BSSS | S | HS | S | MR | MR |
B73 | BSSS | S | HS | HS | S | R |
CML170 | TST | HR | R | R | HR | MR |
KA064 | 陕A群ShaanA | MR | HR | S | MR | MR |
KA081 | 陕A群ShaanA | HR | R | MR | R | S |
KA103 | 陕A群ShaanA | R | R | R | S | MR |
KA105 | 陕A群ShaanA | R | R | MR | R | R |
KA106 | 陕A群ShaanA | MR | MR | S | MR | MR |
KA109 | 陕A群ShaanA | R | MR | MR | MR | S |
KA115 | 陕A群ShaanA | HR | MR | MR | MR | MR |
KA147 | 陕A群ShaanA | R | R | MR | R | S |
KA203 | 陕A群ShaanA | R | R | MR | HR | HS |
KA225 | 陕A群ShaanA | MR | S | MR | S | HS |
KA327 | 陕A群ShaanA | R | R | R | MR | MR |
KB019 | 陕B群ShaanB | MR | MR | MR | S | MR |
KB020 | 陕B群ShaanB | HR | HR | MR | R | MR |
KB024 | 陕B群ShaanB | R | HS | S | MR | MR |
KB025 | 陕B群ShaanB | MR | HS | S | MR | MR |
KB043 | 陕B群ShaanB | MR | MR | S | R | S |
KB052 | 陕B群ShaanB | MR | S | S | S | MR |
KB062 | 陕B群ShaanB | S | S | HS | R | S |
KB081 | 陕B群ShaanB | S | MR | MR | MR | MR |
KB089 | 陕B群ShaanB | MR | HS | S | HS | MR |
KB102 | 陕B群ShaanB | R | R | R | R | S |
KB106 | 陕B群ShaanB | MR | S | S | MR | S |
KB107 | 陕B群ShaanB | MR | S | MR | S | R |
KB109 | 陕B群ShaanB | R | S | MR | R | MR |
KB128 | 陕B群ShaanB | MR | MR | MR | MR | MR |
KB204 | 陕B群ShaanB | R | MR | MR | S | R |
KB207 | 陕B群ShaanB | R | R | S | R | S |
KB227 | 陕B群ShaanB | R | MR | MR | R | S |
KB243 | 陕B群ShaanB | R | S | S | MR | MR |
KB588 | 陕B群ShaanB | HR | MR | MR | MR | S |
Mo17 | Lan | R | MR | MR | MR | MR |
NW-H537 | Reid | MR | R | MR | R | MR |
PH4CV | Lan | S | MR | MR | MR | HS |
PH6WC | BSSS | R | MR | R | HR | HS |
PHK42 | NSSS | MR | R | MR | MR | MR |
PHN11 | NSSS | S | S | HS | MR | MR |
PHT60 | NSSS | R | S | MR | MR | S |
X178 | P78599 | HR | R | R | HR | MR |
昌7-2 Chang7-2 | SPT | HR | MR | R | S | HS |
黄早四HZS | SPT | MR | MR | MR | HS | R |
沈137 Shen137 | P78599 | HR | R | R | R | MR |
郑58 Zheng58 | Reid | R | R | R | R | MR |
表5
玉米自交系已克隆抗病基因基因型检测结果"
自交系 Inbred line | 抗病基因Disease resistance gene | |||
---|---|---|---|---|
qRfg1 | Rcg1 | Htn1 | ZmCCoAOMT2 | |
1145 | RR | rr | rr | RR |
2082 | rr | rr | rr | rr |
AMD43 | rr | rr | 未知Unknown | RR |
B110 | rr | rr | 未知Unknown | RR |
B73 | rr | rr | rr | rr |
CML170 | rr | rr | rr | rr |
KA064 | rr | rr | rr | RR |
KA081 | RR | rr | RR | rr |
KA103 | rr | rr | 未知Unknown | rr |
KA105 | rr | rr | rr | rr |
KA106 | rr | rr | 未知Unknown | RR |
KA109 | rr | rr | rr | RR |
KA115 | rr | rr | RR | rr |
KA147 | rr | rr | RR | RR |
KA203 | rr | rr | 未知Unknown | RR |
KA225 | rr | rr | 未知Unknown | RR |
KA327 | rr | rr | RR | RR |
KB019 | rr | rr | 未知Unknown | RR |
KB020 | rr | rr | RR | rr |
KB024 | rr | rr | 未知Unknown | RR |
KB025 | rr | rr | rr | RR |
KB043 | rr | rr | RR | rr |
KB052 | rr | rr | RR | RR |
KB062 | rr | rr | 未知Unknown | RR |
KB081 | rr | rr | rr | rr |
KB089 | rr | rr | 未知Unknown | RR |
KB102 | rr | rr | rr | 未知Unknown |
KB106 | rr | rr | RR | RR |
KB107 | rr | rr | 未知Unknown | RR |
KB109 | rr | RR | 未知Unknown | RR |
KB128 | rr | rr | RR | rr |
KB204 | rr | rr | 未知Unknown | 未知Unknown |
KB207 | rr | rr | RR | rr |
KB227 | rr | rr | rr | rr |
KB243 | rr | rr | RR | RR |
KB588 | rr | rr | 未知Unknown | rr |
Mo17 | rr | rr | 未知Unknown | RR |
NW-H537 | rr | rr | 未知Unknown | rr |
PH4CV | rr | rr | 未知Unknown | rr |
PH6WC | rr | rr | RR | rr |
PHK42 | rr | rr | 未知Unknown | rr |
PHN11 | rr | rr | 未知Unknown | rr |
PHT60 | rr | rr | 未知Unknown | RR |
X178 | rr | rr | 未知Unknown | RR |
昌7-2 Chang7-2 | rr | rr | 未知Unknown | rr |
黄早四 HZS | rr | rr | 未知Unknown | 未知Unknown |
沈137 Shen137 | RR | rr | RR | RR |
郑58 Zheng58 | rr | rr | 未知Unknown | RR |
[1] | 渠清, 李丽娜, 刘俊, 王绍新, 曹志艳, 董金皋. 我国部分常用玉米种质资源对镰孢菌病害的抗性评价. 中国农业科学, 2019,52(17):2962-2971. |
QU Q, LI L N, LIU J, WANG S X, CAO Z Y, DONG J G. Resistance evaluation of some commonly used maize germplasm resources to fusarium diseases in China. Scientia Agricultura Sinica, 2019,52(17):2962-2971. (in Chinese) | |
[2] | 郭成, 王宝宝, 杨洋, 王春明, 周天旺, 李敏权, 段灿星. 玉米茎腐病研究进展. 植物遗传资源学报, 2019,20(5):1118-1128. |
GUO C, WANG B B, YANG Y, WANG C M, ZHOU T W, LI M Q, DUAN C X. Advances in studies of maize stalk rot. Journal of Plant Genetic Resources, 2019,20(5):1118-1128. (in Chinese) | |
[3] | 段灿星, 董怀玉, 李晓, 李红, 李春辉, 孙素丽, 朱振东, 王晓鸣. 玉米种质资源大规模多年多点多病害的自然发病抗性鉴定. 作物学报, 2020,46(8):1135-1145. |
DUAN C X, DONG H Y, LI X, LI H, LI C H, SUN S L, ZHU Z D, WANG X M. A large-scale screening of maize germplasm for resistance to multiple diseases in multi-plot demonstration for several years under natural condition. Acta Agronomica Sinica, 2020,46(8):1135-1145. (in Chinese) | |
[4] | 张艳, 张叶, 王梓钰, 闻竞, 韩四平, 郭嘉, 邢跃先. 44份玉米自交系对镰孢穗腐病的抗性鉴定. 植物遗传资源学报, 2019,20(2):276-283. |
ZHANG Y, ZHANG Y, WANG Z Y, WEN J, HAN S P, GUO J, XING Y X. Evaluation of resistance to Fusarium ear rot in 44 maize inbred lines. Journal of Plant Genetic Resources, 2019,20(2):276-283. (in Chinese) | |
[5] | 张小利. 玉米对大斑病和南方锈病抗病性研究[D]. 北京: 中国农业科学院, 2013. |
ZHANG X L. Study on the resistance of maize to northern corn leaf blight and southern corn rust[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese) | |
[6] | 赵立萍, 王晓鸣, 段灿星, 龙书生, 李晓, 李洪连, 何月秋, 晋齐鸣, 武小菲, 宋凤景. 中国玉米灰斑病发生现状与未来扩散趋势分析. 中国农业科学, 2015,48(18):3612-3626. |
ZHAO L P, WANG X M, DUAN C X, LONG S S, LI X, LI H L, HE Y Q, JIN Q M, WU X F, SONG F J. Occurrence status and future spreading areas of maize gray leaf spot in China. Scientia Agricultura Sinica, 2015,48(18):3612-3626. (in Chinese) | |
[7] | 金柳艳, 李明顺, 王志伟, 石洁, 郭宁, 刘树森, 张海剑. 美国玉米自交系对4种病原茎腐病的抗性鉴定及遗传多样性分析. 植物遗传资源学报, 2019,20(6):1428-1437. |
JIN L Y, LI M S, WANG Z W, SHI J, GUO N, LIU S S, ZHANG H J. Resistance identification and genetic diversity analysis of American maize inbred lines to four pathogenic stalk rot diseases. Journal of Plant Genetic Resources, 2019,20(6):1428-1437. (in Chinese) | |
[8] | 宋燕春, 裴二芹, 石云素, 王天宇, 黎裕. 玉米重要自交系的肿囊腐霉茎腐病抗性鉴定与评价. 植物遗传资源学报, 2012,13(5):798-802. |
SONG Y C, PEI E Q, SHI Y S, WANG T Y, LI Y. Identification and evaluation of resistance to stalk rot (Pythium inflatum Matthews) in important inbred lines of maize. Journal of Plant Genetic Resources, 2012,13(5):798-802. (in Chinese) | |
[9] | 肖明纲, 宋凤景, 孙兵, 左辛, 赵广山, 辛爱华, 李柱刚. 玉米大斑病广谱抗性外引自交系的发掘与抗病基因初步鉴定. 作物学报, 2018,44(4):614-619. |
XIAO M G, SONG J, SUN B, ZUO X, ZHAO G S, XIN A H, LI Z G. Exploration of foreign maize inbred lines with broad spectrum resistance to northern corn leaf blight and preliminary identification of resistance genes. Acta Agronomica Sinica, 2018,44(4):614-619. (in Chinese) | |
[10] | 董怀玉, 薛玉梅, 王丽娟, 刘可杰, 徐秀德. 外引玉米种质对3种玉米叶斑病的抗性鉴定与评价. 植物保护, 2015,41(2):167-170. |
DONG H Y, XUE Y M, WANG L J, LIU K J, XU X D. Resistance identification and evaluation of introduced maize germplasms to 3 kinds of maize leaf spot. Plant Protection, 2015,41(2):167-170. (in Chinese) | |
[11] | 蒙成, 梁庆平, 蒋益敏, 吴地, 吴烈. 70份外引改良玉米种质对广西主要病害抗性鉴定. 西南农业学报, 2019,32(4):720-727. |
MENG C, LIANG Q P, JIANG Y M, WU D, WU L. Identification on disease resistance of 70 introduced and improved maize to main diseases in Guangxi. Southwest China Journal of Agricultural Sciences, 2019,32(4):720-727. (in Chinese) | |
[12] |
WANG X M, ZHANG Y H, XU X, LI H J, WU X F, ZHANG S H, LI X H. Evaluation of maize inbred lines currently used in Chinese breeding programs for resistance to six foliar diseases. The Crop Journal, 2014,2(4):213-222.
doi: 10.1016/j.cj.2014.04.004 |
[13] |
AFOLABI G, OJIAMBO S, EKPO A, MENKIR A, BANDYOPADHYAY R. Novel sources of resistance to Fusarium stalk rot of maize in tropical Africa. Plant Disease, 2008,92(5):772-780.
doi: 10.1094/PDIS-92-5-0772 |
[14] |
NYANAPAH J, AYIECHO P, NYABUNDI J, OTIENO W, OJIAMBO P. Field characterization of partial resistance to gray leaf spot in elite maize germplasm. Phytopathology, 2020,110(10):1668-1679.
doi: 10.1094/PHYTO-12-19-0446-R |
[15] |
MENKIR A, ADEPOJU A. Registration of 20 Tropical midaltitude maize line sources with resistance to gray leaf spot. Crop Science, 2005,45:803-804.
doi: 10.2135/cropsci2005.0803 |
[16] |
ELBIETA C, AGNIESZKA W, URSZULA P, MARTA P, JERZY C, UKASZ S. Differences in ear rot resistance and Fusarium verticillioides-produced fumonisin contamination between polish currently and historically used maize inbred lines. Frontiers in Microbiology, 2019,10:449.
doi: 10.3389/fmicb.2019.00449 |
[17] |
DERERA J, SHIMELIS H, ABERA W, LAING M, WORKU. Northern leaf blight response of elite maize inbred lines adapted to the mid-altitude sub-humid tropics. Cereal Research Communications, 2016,44(1):141-152.
doi: 10.1556/0806.43.2015.037 |
[18] | 贾娇, 张伟, 孟玲敏, 苏前富, 晋齐鸣. 71份新选育自交系对主要玉米病害的抗性分析. 东北农业科学, 2020: 1-6. |
JIA J, ZHANG W, MENG L M, SU Q F, JIN Q M. Resistance analysis of 71 new inbred lines to main maize diseases. Journal of Northeast Agricultural Sciences, 2020: 1-6. (in Chinese) | |
[19] | 余辉, 宋伟, 赵久然, 王凤格, 吴金凤. 分子标记辅助选择玉米自交系京24两种抗病主效基因的聚合. 分子植物育种, 2014,12(2):240-245. |
YU H, SONG W, ZHAO J R, WANG F G, WU J F. Two major resistance genes pyramiding on maize inbred line Jing24 with marker assisted selection. Molecular Plant Breeding, 2014,12(2):240-245. (in Chinese) | |
[20] | SEVERINE H, DANIELA S, SIMON K, BETTINA K, THOMAS W, GERHARD H, MIRJAM F, JAMES B, THOMAS P, MILENA O, BEAT K. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(28):8780-8785. |
[21] |
YANG Q, HE Y J, MERCY K, TIMOTHY C, AMY K, ELI B, BIAN Y, FARID K, YANG L, PAULO T, JUDITH K, REBECCA N, MICHAEL K, JEFFERY D, RANDALL W, JEFFREY C, LI X, NICK L, PETER B. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nature Genetics, 2017,49(9):1364-1372.
doi: 10.1038/ng.3919 |
[22] |
WANG C, YANG Q, WANG W X, LI Y P, GUO Y L, ZHANG D F, MA X N, SONG W, ZHAO J R, XU M L. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. New Phytologist, 2017,215(4):1503-1515.
doi: 10.1111/nph.2017.215.issue-4 |
[23] |
YE J R, ZHONG T, ZHANG D F, MA C Y, WANG L N, YAO L S, ZHANG Q Q, ZHU M, XU M L. The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maize. Molecular Plant, 2019,12(3):360-373.
doi: 10.1016/j.molp.2018.10.005 |
[24] |
FREY J. Fitness evaluation of Rcg1, a locus that confers resistance to Colletotrichum graminicola (Ces.) G.W. Wils. using near-isogenic maize hybrids. Crop Science, 2011,51(4):1551-1563.
doi: 10.2135/cropsci2010.10.0613 |
[25] | 王金萍, 刘永伟, 孙果忠, 王海波. 抗茎腐病分子标记在159份玉米自交系中的验证及实用性评价. 植物遗传资源学报, 2017,18(4):754-762. |
WANG J P, LIU Y W, SUN G Z, WANG H B. Evaluation and validation of molecular markers associated with stalk rot resistance in 159 maize inbred lines. Journal of Plant Genetic Resources, 2017,18(4):754-762. (in Chinese) | |
[26] | 杨洋, 郭成, 孙素丽, 陈国康, 朱振东, 王晓鸣, 段灿星. 玉米抗腐霉茎腐病种质标记基因型鉴定与遗传多样性分析. 植物遗传资源学报, 2019,20(6):1418-1427. |
YANG Y, GUO C, SUN S L, CHEN G K, ZHU Z D, WANG X M, DUAN C X. Marker-assisted identification and genetic diversity analysis of maize germplasm resources with resistance to Pythium stalk rot. Journal of Plant Genetic Resources, 2019,20(6):1418-1427. (in Chinese) | |
[27] | 程品冰, 王晓鸣, 高卫东. 玉米抗大斑病基因Ht2、Ht3分子标记的应用检测. 植物遗传资源学报, 2007(3):285-288. |
CHENG P B, WANG X M, GAO W D. Practical detection of molecular markers for resistance gene Ht2, Ht3 to northern corn leaf blight. Journal of Plant Genetic Resources, 2007(3):285-288. (in Chinese) | |
[28] | SERMONS S, BALINT-KURTI P. Large scale field inoculation and scoring of maize southern leaf blight and other maize foliar fungal diseases. Bio-protocol, 2018,8(5):e2745. |
[29] |
YANG Q, YIN G M, GUO Y L, ZHANG D F, CHEN S J, XU M L. A major QTL for resistance to Gibberella stalk rot in maize. Theoretical and Applied Genetics, 2010,121(4):673-687.
doi: 10.1007/s00122-010-1339-0 |
[30] | ZILA C T, SAMAYOA L F, SANTIAGO R, BUTRON A, HOLLAND J B. A genome-wide association study reveals genes associated with Fusarium ear rot resistance in a maize core diversity panel. Genes Genomes Genetics, 2013,3(11):2095-2104. |
[31] | DONG C P, WU Y B, GAO J Y, ZHOU Z J, MU C, MA P P, CHEN J F, WU J Y. Field inoculation and classification of maize ear rot caused by Fusarium verticillioides. Bio-protocol, 2018,8(23):e3099. |
[32] |
JILL R. L, MATTHEW K, MAJOR G, SHERRY F, PETER J. B, Identification of alleles conferring resistance to gray leaf spot in maize derived from its wild progenitor species teosinte. Crop Science, 2016,56(1):209-218.
doi: 10.2135/cropsci2014.07.0468 |
[33] |
BALINT-KURTI P J, YANG J Y, VAN G, JUNG J, SMITH M. Use of a maize advanced intercross line for mapping of QTL for northern leaf blight resistance and multiple disease resistance. Crop Science, 2010,50(2):458-466.
doi: 10.2135/cropsci2009.02.0066 |
[34] | HOLLAND J B, NYQUIST W E, CUAUHTEMOC T. Estimating and interpreting heritability for plant breeding: An update. Plant Breeding Reviews, 2002: 9-112. |
[35] |
MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980,8(19):4321-4325.
doi: 10.1093/nar/8.19.4321 |
[36] |
MUELLER D S, WISE K A, SISSON A J, ALLEN T W, BERGSTROM G C, BOSLEY D B, BRADLEY C A, BRODERS K D, BYAMUKAMA E, CHILVERS M I, COLLINS A, FASKE T R, FRISKOP A J, HEINIGER R W, HOLLIER C A, HOOKER DAVID C, ISAKEIT T, JACKSON-ZIEMS T A, JARDINE D J, KELLY H M, KINZER K, KOENNING S R, MALVICK D K. Corn yield loss estimates due to diseases in the United States and Ontario, Canada, from 2012 to 2015. Plant Health Progress, 2016,17(3):211-222.
doi: 10.1094/PHP-RS-16-0030 |
[37] | 徐凌, 左为亮, 刘永杰, 刘青青, 陶永富, 徐明良, 叶建荣. 玉米主要病害抗性遗传研究进展. 中国农业科技导报, 2013,15(3):18-29. |
XU L, ZUO W L, LIU Y J, LIU Q Q, TAO Y F, XU M L, YE J R. Progress on major gene /QTL for disease resistance in maize. Journal of Agricultural Science and Technology, 2013,15(3):18-29. (in Chinese) | |
[38] | 余辉, 宋伟, 赵久然, 王凤格, 吴金凤. 分子标记辅助选择育成的玉米自交系京24单抗丝黑穗病和茎腐病改良材料性状分析. 分子植物育种, 2014,12(1):56-61. |
YU H, SONG W, ZHAO J R, WANG F G, WU J F. Characters analysis on resistance improved materials of Jing24 single-resistance to head smut and stalk rot bred with molecular marker-assisted selection. Molecular Plant Breeding, 2014,12(1):56-61. (in Chinese) | |
[39] |
ZHAO X R, TAN G Q, XING Y X, WEI L, CHAO Q, ZUO W L, THOMAS L, XU M L, Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Molecular Breeding, 2012,30(2):1077-1088.
doi: 10.1007/s11032-011-9694-3 |
[40] | 孙华, 张海剑, 郭宁, 石洁, 陈丹, 马红霞. 黄淮海夏玉米主产区穗腐病病原菌的分离鉴定. 植物保护学报, 2017,44(5):796-802. |
SUN H, ZHANG H J, GUO N, SHI J, CHEN D, MA H X. Isolation and identification of pathogens causing maize ear rot in Huang-Huai- Hai summer corn region. Journal of Plant Protection, 2017,44(5):796-802. (in Chinese) | |
[41] | 谭世麒. 陕西玉米灰斑病病原菌鉴定及防控药剂和抗病品种的筛选[D]. 杨凌: 西北农林科技大学, 2019. |
TAN S Q. Pathogen identification of corn gray leaf spot in Shaanxi and screening effective fungicides and resistant variety for disease control[D]. Yangling: Northwest A&F University, 2019. (in Chinese) |
[1] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[2] | 柴海燕,贾娇,白雪,孟玲敏,张伟,金嵘,吴宏斌,苏前富. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性[J]. 中国农业科学, 2023, 56(1): 64-78. |
[3] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[4] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[5] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[6] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[7] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[8] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. |
[9] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[10] | 郭泽西,孙大运,曲俊杰,潘凤英,刘露露,尹玲. 查尔酮合成酶基因在葡萄抗灰霉病和霜霉病中的作用[J]. 中国农业科学, 2022, 55(6): 1139-1148. |
[11] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[12] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[13] | 乔远,杨欢,雒金麟,汪思娴,梁蓝月,陈新平,张务帅. 西北地区玉米生产投入及生态环境风险评价[J]. 中国农业科学, 2022, 55(5): 962-976. |
[14] | 黄兆福, 李璐璐, 侯梁宇, 高尚, 明博, 谢瑞芝, 侯鹏, 王克如, 薛军, 李少昆. 不同种植区玉米生理成熟后田间站秆脱水的积温需求[J]. 中国农业科学, 2022, 55(4): 680-691. |
[15] | 石习, 宁丽华, 葛敏, 邬奇, 赵涵. 玉米氮状况相关生物标记物的筛选和应用[J]. 中国农业科学, 2022, 55(3): 438-450. |
|