[1] |
STALKER H T. Utilizing wild species for peanut improvement. Crop Science, 2017, 57(3): 1102-1120.
|
[2] |
CASON J M, SIMPSON C E, BUROW M D, TALLURY S, PHAM H, RAVELOMBOLA S W. Use of wild and exotic germplasm for resistance in peanut. Journal of Plant Registrations, 2023, 17(1): 1-25.
|
[3] |
WANG S Y, LI L N, FU L Y, LIU H, QIN L, CUI C H, MIAO L J, ZHANG Z X, GAO W, DONG W Z, HUANG B Y, ZHENG Z, TANG F S, ZHANG X Y, DU P. Development and characterization of new allohexaploid resistant to web blotch in peanut. Journal of Integrative Agriculture, 2021, 20(1): 55-64.
|
[4] |
STALKER H T. Utilizing Arachis cardenasii as a source of Cercospora leafspot resistance for peanut improvement. Euphytica, 1984, 33(2): 529-538.
|
[5] |
STALKER H T, BEUTE M K, SHEW B B, ISLEIB T G. Registration of five leaf spot-resistant peanut germplasm lines. Crop Science, 2002, 42(1): 314-316.
pmid: 11756308
|
[6] |
TALLURY S P, ISLEIB T G, COPELAND S C, ROSAS-ANDERSON P, BALOTA M, SINGH D, STALKER H T. Registration of two multiple disease-resistant peanut germplasm lines derived from Arachis cardenasii krapov., & W.C. Gregory, GKP 10017. Journal of Plant Registrations, 2014, 8(1): 86-89.
|
[7] |
HANCOCK W G, TALLURY S P, ISLEIB T G, CHU Y, OZIAS-AKINS P, STALKER H T. Introgression analysis and morphological characterization of an Arachis hypogaea × A. diogoi interspecific hybrid derived population. Crop Science, 2019, 59(2):640-649.
|
[8] |
SINGSIT C, HOLBROOK C C, CULBREATH A K, OZIAS-AKINS P. Progenies of an interspecific hybrid between Arachis hypogaea and A. stenosperma pest resistance and molecular homogeneity. Euphytica, 1995, 83(1): 9-14.
|
[9] |
SIMPSON C E. Use of wild Arachis species/introgression of genes into A. hypogaea L.. Peanut Science, 2001, 28(2): 114-116.
|
[10] |
王兴军, 张新友. 花生生物技术研究. 北京: 科学出版社, 2015.
|
|
WANG X J, ZHANG X Y. Studies on Peanut Biotechnology. Beijing: Science Press, 2015. (in Chinese)
|
[11] |
BERTIOLI D J, CLEVENGER J, GODOY I J, STALKER H T, WOOD S, SANTOS J F, BALLÉN-TABORDA C, ABERNATHY B, AZEVEDO V, CAMPBELL J, CHAVARRO C, CHU Y, FARMER A D, FONCEKA D, GAO D Y, GRIMWOOD J, HALPIN N, KORANI W, MICHELOTTO M D, OZIAS-AKINS P, VAUGHN J, YOUNGBLOOD R, MORETZSOHN M C, WRIGHT G C, JACKSON S A, CANNON S B, SCHEFFLER B E, LEAL-BERTIOLI S C M. Legacy genetics of Arachis cardenasii in the peanut crop shows the profound benefits of international seed exchange. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(38): e2104899118.
|
[12] |
HE G H, MENG R H, NEWMAN M, GAO G Q, PITTMAN R N, PRAKASH C S. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biology, 2003, 3: 3.
|
[13] |
MORETZSOHN M C, LEOI L, PROITE K, GUIMARÃES P M, LEAL-BERTIOLI S C M, GIMENES M A, MARTINS W S, VALLS J F M, GRATTAPAGLIA D, BERTIOLI D J. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theoretical and Applied Genetics, 2005, 111(6): 1060-1071.
|
[14] |
PALMIERI D A, BECHARA M D, CURI R A, GIMENES M A, LOPES C R. Novel polymorphic microsatellite markers in section Caulorrhizae (Arachis, Fabaceae). Molecular Ecology Notes, 2005, 5(1): 77-79.
|
[15] |
李丽娜, 杜培, 付留洋, 刘华, 徐静, 秦利, 严玫, 韩锁义, 黄冰艳, 董文召, 汤丰收, 张新友. 花生栽培种与野生种(Arachis oteroi)人工杂交双二倍体的创制和鉴定. 作物学报, 2017, 43(1): 133-140.
|
|
LI L N, DU P, FU L Y, LIU H, XU J, QIN L, YAN M, HAN S Y, HUANG B Y, DONG W Z, TANG F S, ZHANG X Y. Development and characterization of amphidiploid derived from interspecific cross between cultivated peanut and its wild relative Arachis oteroi. Acta Agronomica Sinica, 2017, 43(1): 133-140. (in Chinese)
|
[16] |
付留洋, 李丽娜, 李文静, 杜培, 刘华, 秦利, 黄冰艳, 董文召, 汤丰收, 臧新, 张新友. 花生栽培种(Arachis hypogaea L.)与野生种 Arachis macedoi 杂种 F1细胞遗传分析. 中国油料作物学报, 2016, 38(3): 300-306.
|
|
FU L Y, LI L N, LI W J, DU P, LIU H, QIN L, HUANG B Y, DONG W Z, TANG F S, ZANG X, ZHANG X Y. Cytogenetic analysis of interspecific hybrid between cultivated peanut (Arachis hypogaea L.) and wild species A. macedoi. Chinese Journal of Oil Crop Sciences, 2016, 38(3): 300-306. (in Chinese)
|
[17] |
DU P, LI L N, LIU H, FU L Y, QIN L, ZHANG Z X, CUI C H, SUN Z Q, HAN S Y, XU J, DAI X D, HUANG B Y, DONG W Z, TANG F S, ZHUANG L F, HAN Y H, QI Z J, ZHANG X Y. High- resolution chromosome painting with repetitive and single copy oligonucleotides in Arachis species identifies structural rearrangements and genome differentiation. BMC Plant Biology, 2018, 18(1): 240.
|
[18] |
DU P, FU L Y, WANG Q, LANG T, LIU H, HAN S Y, LI C Y, HUANG B Y, QIN L, DAI X D, DONG W Z, ZHANG X Y. Development of Oligo-GISH kits for efficient detection of chromosomal variants in peanut. The Crop Journal, 2023, 11(1): 238-246.
|
[19] |
SEIJO J G, LAVIA G I, FERNÁNDEZ A, KRAPOVICKAS A, DUCASSE D, MOSCONE E A. Physical mapping of the 5S and 18S-25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). American Journal of Botany, 2004, 91(9): 1294-1303.
|
[20] |
STALKER H T, TALLURY S P, OZIAS-AKINS P, BERTIOLI D, LEAL BERTIOLI S C. The value of diploid peanut relatives for breeding and genomics. Peanut Science, 2013, 40(2): 70-88.
|
[21] |
COMPANY M, STALKER H T, WYNNE J C. Cytology and leafspot resistance in Arachis hypogaea × wild species hybrids. Euphytica, 1982, 31(3): 885-893.
|
[22] |
SARAVANAN S, DURAI R S R, VAIDYANATHAN R. Cytotaxonomy and gene introgression in wild Arachis species. Agricultural Reviews, 2015, 36(1): 54-60.
|
[23] |
STALKER H T, WYNNE J C. Cytology of interspecific hybrids in section Arachis of peanuts. Peanut Science, 1979, 6(2): 110-114.
|
[24] |
姜慧芳, 任小平, 黄家权, 雷永, 廖伯寿. 野生花生脂肪酸组成的遗传变异及远缘杂交创造高油酸低棕榈酸花生新种质. 作物学报, 2009, 35(1): 25-32.
doi: 10.3724/SP.J.1006.2009.00025
|
|
JIANG H F, REN X P, HUANG J Q, LEI Y, LIAO B S. Genetic variation of fatty acid components in Arachis species and development of interspecific hybrids with high oleic and low palmitic acids. Acta Agronomica Sinica, 2009, 35(1): 25-32. (in Chinese)
|
[25] |
GARCIA G M, TALLURY S P, STALKER H T, KOCHERT G. Molecular analysis of Arachis interspecific hybrids. Theoretical and Applied Genetics, 2006, 112(7): 1342-1348.
|
[26] |
TIAN X Y, SHI L Y, GUO J, FU L Y, DU P, HUANG B Y, WU Y, ZHANG X Y, WANG Z L. Chloroplast phylogenomic analyses reveal a maternal hybridization event leading to the formation of cultivated peanuts. Frontiers in Plant Science, 2021, 12: 804568.
|
[27] |
ZHANG H K, BIAN Y, GOU X W, ZHU B, XU C M, QI B, LI N, RUSTGI S, ZHOU H, HAN F P, JIANG J M, VON WETTSTEIN D, LIU B. Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3447-3452.
|
[28] |
KASHKUSH K, FELDMAN M, LEVY A A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics, 2002, 160(4): 1651-1659.
doi: 10.1093/genetics/160.4.1651
pmid: 11973318
|
[29] |
ZHANG S Y, DU P, LU X Y, FANG J X, WANG J Q, CHEN X J, CHEN J Y, WU H, YANG Y, TSUJIMOTO H, CHU C G, QI Z J. Frequent numerical and structural chromosome changes in early generations of synthetic hexaploid wheat. Genome, 2022, 65(4): 205-217.
|
[30] |
MADLUNG A, MASUELLI R W, WATSON B, REYNOLDS S H, DAVISON J, COMAI L. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiology, 2002, 129(2): 733-746.
|
[31] |
CHENG F, WU J, CAI X, LIANG J L, FREELING M, WANG X W. Gene retention, fractionation and subgenome differences in polyploid plants. Nature Plants, 2018, 4: 258-268.
doi: 10.1038/s41477-018-0136-7
pmid: 29725103
|
[32] |
DIEZ C M, ROESSLER K, GAUT B S. Epigenetics and plant genome evolution. Current Opinion in Plant Biology, 2014, 18: 1-8.
doi: 10.1016/j.pbi.2013.11.017
pmid: 24424204
|
[33] |
DING M Q, CHEN Z J. Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. Current Opinion in Plant Biology, 2018, 42: 37-48.
doi: S1369-5266(17)30186-3
pmid: 29502038
|