[1] |
LANGE C E. The host and geographical range of the grasshopper pathogen Paranosema (Nosema) locustae revisited. Journal of Orthoptera Research, 2005, 14(2): 137-141.
|
[2] |
赵紫华, 涂雄兵, 张泽华, 李志红. 警惕沙漠蝗种群持续增加和入侵我国边境地区的风险. 植物保护学报, 2021, 48(1): 5-12.
|
|
ZHAO Z H, TU X B, ZHANG Z H, LI Z H. The alert of population expansion of the desert locust Schistocerca gregaria and its risk to enter China. Journal of Plant Protection, 2021, 48(1): 5-12. (in Chinese)
|
[3] |
张龙. 蝗虫微孢子虫及其在蝗害治理中的作用. 生物学通报, 1999, 34(2): 11-12.
|
|
ZHANG L. The role of Nosema locust in pest control. Bulletin of Biology, 1999, 34(2): 11-12. (in Chinese)
|
[4] |
HOU C Y, GUO D Q, YU X, WANG S Y, LIU T H. TMT-based proteomics analysis of the anti-hepatocellular carcinoma effect of combined dihydroartemisinin and sorafenib. Biomedicine & Pharmacotherapy, 2020, 126: 109862.
|
[5] |
FU M Z, YAN Y C, SU H, WANG J J, SHI X J, ZHOU H C, ZHANG Q, XU X G. Spleen proteome profiling of dairy goats infected with C. pseudotuberculosis by TMT-based quantitative proteomics approach. Journal of Proteomics, 2021, 248: 104352.
|
[6] |
严毓骅, 张龙. 我国蝗虫微孢子虫治蝗的进展. 植保技术与推广, 1994(1): 43.
|
|
YAN Y H, ZHANG L. Progress of controlling locust with Nosema locustae in China. Plant Protection Technology and Promotion, 1994(1): 43. (in Chinese)
|
[7] |
张龙, 游银伟. 中国特色蝗灾治理技术体系及应用成效. 植物保护学报, 2022, 49(1): 118-124.
|
|
ZHANG L, YOU Y W. Technical systems for locust and grasshopper management with Chinese features and their success in application. Journal of Plant Protection, 2022, 49(1): 118-124. (in Chinese)
|
[8] |
陈龙欣. 蝗虫微孢子虫寄生飞蝗的分子基础[D]. 北京: 中国农业大学, 2017.
|
|
CHEN L X. Molecular basis of Antonospora locustae parasite in locust[D]. Beijing: China Agricultural University, 2017. (in Chinese)
|
[9] |
CHEN L X, GAO X K, LI R T, ZHANG L M, HUANG R, WANG L Q, SONG Y, XING Z Z, LIU T, NIE X N, et al. Complete genome of a unicellular parasite (Antonospora locustae) and transcriptional interactions with its host locust. Microbial Genomics, 2020, 6(9): mgen000421.
|
[10] |
姜义仁, 宋佳, 秦玉璘, 王勇, 臧敏, 钟亮, 杨瑞生, 石生林, 段玉玺, 秦利. 柞蚕感染微孢子虫后血淋巴免疫应答蛋白质的分离与鉴定. 昆虫学报, 2012, 55(10): 1119-1131.
|
|
JIANG Y R, SONG J, QIN Y L, WANG Y, ZANG M, ZHONG L, YANG R S, SHI S L, DUAN Y X, QIN L. Separation and identification of haemolymph proteins involved in immune response to Nosema pernyi infection in Antheraea pernyi (Lepidoptera: Saturniidae) larvae. Acta Entomologica Sinica, 2012, 55(10): 1119-1131. (in Chinese)
|
[11] |
LIU H, WEI X J, YE X F, ZHANG H H, YANG K, SHI W P, ZHANG J R, JASHENKO R, JI R, HU H X. The immune response of Locusta migratoria manilensis at different times of infection with Paranosema locustae. Archives of Insect Biochemistry and Physiology, 2023, 114(4): e22055.
|
[12] |
ZHANG H H, YANG K, WANG H, LIU H, SHI W P, KABAK I, JI R, HU H X. Molecular and biochemical changes in Locusta migratoria (Orthoptera: Acrididae) infected with Paranosema locustae. Journal of Insect Science, 2023, 23(5): 1.
|
[13] |
MOURA H, OSPINA M, WOOLFITT A R, BARR J R, VISVESVARA G S. Analysis of four human microsporidian isolates by MALDI-TOF mass spectrometry. Journal of Eukaryotic Microbiology, 2003, 50(3): 156-163.
pmid: 12836871
|
[14] |
HAN B, POLONAIS V, SUGI T, YAKUBU R, TAKVORIAN P M, CALI A, MAIER K, LONG M X, LEVY M, TANOWITZ H B, PAN G Q, DELBAC F, ZHOU Z Y, WEISS L M. The role of microsporidian polar tube protein 4 (PTP4) in host cell infection. PLoS Pathogens, 2017, 13(4): e1006341.
|
[15] |
WANG Y, MA Y Y, WANG D Y, LIU W, CHEN J, JIANG Y, YANG R, QIN L. Polar tube structure and three polar tube proteins identified from Nosema pernyi. Journal of Invertebrate Pathology, 2019, 168: 107272.
|
[16] |
LV Q, WANG L J, FAN Y P, MENG X Z, LIU K K, ZHOU B Q, CHEN J, PAN G Q, LONG M X, ZHOU Z Y. Identification and characterization a novel polar tube protein (NbPTP6) from the microsporidian Nosema bombycis. Parasites and Vectors, 2020, 13(1): 475.
|
[17] |
YANG D L, PAN G Q, DANG X Q, SHI Y W, LI C F, PENG P, LUO B, BIAN M F, SONG Y, MA C, et al. Interaction and assembly of two novel proteins in the spore wall of the microsporidian species Nosema bombycis and their roles in adherence to and infection of host cells. Infection and Immunity, 2015, 83(4): 1715-1731.
|
[18] |
ESVARAN V G, PONNUVEL S, JAGADISH A, SAVITHRI H S, SUBRAMANYA H S, PONNUVEL K M. Cloning, expression and characterization of spore wall protein 5 (SWP5) of Indian isolate NIK-1S of Nosema bombycis. The Protein Journal, 2022, 41(6): 596-612.
|
[19] |
YU B, ZHENG R, BIAN M F, LIU T, LU K, BAO J L, PAN G Q, ZHOU Z Y, LI C F. A monoclonal antibody targeting spore wall protein 1 inhibits the proliferation of Nosema bombycis in Bombyx mori. Microbiology Spectrum, 2023, 11(6): e0068123.
|
[20] |
康乐, 魏丽亚. 中国蝗虫学研究60年. 植物保护学报, 2022, 49(1): 4-16.
|
|
KANG L, WEI L Y. Progress of acridology in China over the last 60 years. Journal of Plant Protection, 2022, 49(1): 4-16. (in Chinese)
|
[21] |
石旺鹏, 谭树乾. 蝗虫生物防治发展现状及趋势. 中国生物防治学报, 2019, 35(3): 307-324.
doi: 10.16409/j.cnki.2095-039x.2019.03.020
|
|
SHI W P, TAN S Q. Current status and trend on grasshopper and locust biological control. Chinese Journal of Biological Control, 2019, 35(3): 307-324. (in Chinese)
doi: 10.16409/j.cnki.2095-039x.2019.03.020
|
[22] |
高兴珂, 班丽萍. 蝗虫微孢子虫的基因组学研究进展及应用现状. 植物保护学报, 2021, 48(1): 60-64.
|
|
GAO X K, BAN L P. Genomics research progresses in microsporidia Antonospora locustae and its application status. Journal of Plant Protection, 2021, 48(1): 60-64. (in Chinese)
|
[23] |
PARRELLA P, ELIKAN A B, KOGAN H V, WAGUE F, MARSHALLECK C A, SNOW J W. Bleomycin reduces Vairimorpha (Nosema) ceranae infection in honey bees with some evident host toxicity. Microbiology Spectrum, 2024, 12(2): e0334923.
|
[24] |
黄诗迪, 黄彩萍, 于欢, 王敦. 棉铃虫核型多角体病毒感染对宿主昆虫GST活性及其表达水平的影响. 西北农林科技大学学报(自然科学版), 2015, 43(11): 129-133.
|
|
HUANG S D, HUANG C P, YU H, WANG D. Effect of Helicoverpa armigera nucleopolyhedrovirus infection on GST activity and GST expression on host insect. Journal of Northwest A&F University (Natural Science Edition), 2015, 43(11): 129-133. (in Chinese)
|
[25] |
ENAYATI A A, RANSON H, HEMINGWAY J. Insect glutathione transferases and insecticide resistance. Insect Molecular Biology, 2005, 14(1): 3-8.
doi: 10.1111/j.1365-2583.2004.00529.x
pmid: 15663770
|
[26] |
赵玲, 赵莉, 肖宏伟, 王登元. 高效氯氟氰菊酯对意大利蝗的杀虫活性及对谷胱甘肽S-转移酶活性的影响. 植物保护, 2014, 40(3): 130-132, 142.
|
|
ZHAO L, ZHAO L, XIAO H W, WANG D Y. Insecticidal activities of lambda-cyhalothrin (EC) to Calliptamus italicus and effects on glutathione S-transferases (GSTs). Plant Protection, 2014, 40(3): 130-132, 142. (in Chinese)
|
[27] |
李亚红. 昆虫谷胱甘肽硫转移酶农药解毒与内源代谢研究进展. 山西大同大学学报(自然科学版), 2014, 30(4): 49-51.
|
|
LI Y H. The progress in the research of insect GST on insecticide detoxification and endogenous metabolism. Journal of Datong University (Natural Science Edition), 2014, 30(4): 49-51. (in Chinese)
|
[28] |
王薇, 韩岚岚, 赵奎军. 昆虫热休克蛋白Hsp70的研究进展. 东北农业大学学报, 2009, 40(11): 129-132.
|
|
WANG W, HAN L L, ZHAO K J. Research advance of heat shock protein 70 in entomology. Journal of Northeast Agricultural University, 2009, 40(11): 129-132. (in Chinese)
|
[29] |
夏晓峰, 林海兰, 郑丹丹, 杨广, 尤民生. 小菜蛾热休克蛋白基因的鉴定及其表达模式分析. 昆虫学报, 2013, 56(5): 457-464.
|
|
XIA X F, LIN H L, ZHENG D D, YANG G, YOU M S. Identification and expression patterns of heat shock protein genes in the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Acta Entomologica Sinica, 2013, 56(5): 457-464. (in Chinese)
|
[30] |
张彦丰, 王正浩, 农向群, 曹广春, 赵莉, 王广君, 张泽华. 绿僵菌侵染对东亚飞蝗中肠保护酶和解毒酶的影响. 中国生物防治学报, 2015, 31(6): 876-881.
doi: 10.16409/j.cnki.2095-039x.2015.06.009
|
|
ZHANG Y F, WANG Z H, NONG X Q, CAO G C, ZHAO L, WANG G J, ZHANG Z H. Effect of Metarhizium anisopliae on protective enzyme and detoxification enzyme in the midgut of Locusta migratoria manilensis. Chinese Journal of Biological Control, 2015, 31(6): 876-881. (in Chinese)
|
[31] |
徐欣, 吴玉娇, 于滨, 孟宪志, 陈杰, 刘中文, 张永君, 潘国庆. 柞蚕微孢子虫感染后柞蚕卵转录组及免疫相关基因功能分析. 昆虫学报, 2023, 66(12): 1560-1569.
|
|
XU X, WU Y J, YU B, MENG X Z, CHEN J, LIU Z W, ZHANG Y J, PAN G Q. Transcriptome and immune-related gene function analyses of Antheraea pernyi (Lepidoptera: Saturniidae) eggs infected by Nosema pernyi. Acta Entomologica Sinica, 2023, 66(12): 1560-1569. (in Chinese)
|
[32] |
KEELING P J, CORRADI N. Shrink it or lose it: Balancing loss of function with shrinking genomes in the microsporidia. Virulence, 2011, 2(1): 67-70.
pmid: 21217203
|
[33] |
TIMOFEEV S, TOKAREV Y, DOLGIKH V. Energy metabolism and its evolution in Microsporidia and allied taxa. Parasitology Research, 2020, 119(5): 1433-1441.
doi: 10.1007/s00436-020-06657-9
pmid: 32200463
|
[34] |
JOHN S, WEISS J N, RIBALET B. Subcellular localization of hexokinases I and II directs the metabolic fate of glucose. PLoS ONE, 2011, 6(3): e17674.
|
[35] |
CUOMO C A, DESJARDINS C A, BAKOWSKI M A, GOLDBERG J, MA A T, BECNEL J J, DIDIER E S, FAN L, HEIMAN D I, LEVIN J Z, YOUNG S, ZENG Q D, TROEMEL E R. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome Research, 2012, 22(12): 2478-2488.
doi: 10.1101/gr.142802.112
pmid: 22813931
|
[36] |
VALDIVIA R H, HEITMAN J. Endosymbiosis: The evil within. Current Biology, 2007, 17(11): R408-R410.
doi: 10.1016/j.cub.2007.04.001
pmid: 17550764
|
[37] |
LUO J, HE Q, XU J Z, XU C, HAN Y Z, GAO H L, MENG X Z, PAN G Q, LI T, ZHOU Z Y. Microsporidia infection upregulates host energy metabolism but maintains ATP homeostasis. Journal of Invertebrate Pathology, 2021, 186: 107596.
|
[38] |
JIA J, HUANG W, SCHÖRKEN U, SAHM H, SPRENGER G A, LINDQVIST Y, SCHNEIDER G. Crystal structure of transaldolase B from Escherichia coli suggests a circular permutation of the alpha/beta barrel within the class I aldolase family. Structure, 1996, 4(6): 715-724.
|
[39] |
TANG B, WANG S G, ZHANG F. Two storage hexamerins from the beet armyworm Spodoptera exigua: Cloning, characterization and the effect of gene silencing on survival. BMC Molecular Biology, 2010, 11: 65.
|