中国农业科学 ›› 2022, Vol. 55 ›› Issue (19): 3854-3861.doi: 10.3864/j.issn.0578-1752.2022.19.014
郭军(),王克华,韩威,窦套存,王星果,胡玉萍,马猛,曲亮()
收稿日期:
2021-12-22
接受日期:
2022-03-09
出版日期:
2022-10-01
发布日期:
2022-10-10
通讯作者:
曲亮
作者简介:
郭军,Tel:0514-85599012;E-mail: 基金资助:
GUO Jun(),WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang()
Received:
2021-12-22
Accepted:
2022-03-09
Online:
2022-10-01
Published:
2022-10-10
Contact:
Liang QU
摘要:
【目的】动物个体遗传物质除了调控自身表型之外,还通过资源分配或行为互动影响同伴性能表现,称之为间接遗传效应。畜禽选育时,遗传模型如果包含了间接遗传效应,不仅有利于改善个体间社会关系,还可以获得更多的遗传进展。研究以饲养于群体笼内如皋黄鸡为试材,以间接遗传模型评估体重数据,旨在为如皋黄鸡选育提供支持。【方法】体重数据采集自如皋黄鸡选育群体,试验鸡于42日龄称重,收集原始数据11 983条。数据清洗包括去除超出三倍标准差的离群值、去除翅号遗失个体、去除性别不明个体以及去除单笼养殖量少于4只的记录。系谱数据包含12 208只鸡:11 735只鸡有体重记录,473只鸡没有体重记录;10 560只鸡没有后代,1 648只鸡有后代,其中种公鸡208只,种母鸡1 440只。以SPSS软件中的单因素方差分析检验环境因素对体重的影响,确定列入固定效应的因子。应用经典动物模型、间接遗传模型分析如皋黄鸡早期体重方差组分及遗传参数,并检验间接遗传方差是否存在稀释效应。遗传模型中包括一般固定效应、固定回归项、加性遗传效应、间接遗传效应、共同环境效应以及残差。研究中,以单笼养殖量作为固定回归项,将加性遗传效应、间接遗传效应、共同环境效应列为随机项。稀释参数起始值设定为0,依次以0.1幅度递增至1.0,经AIC、BIC筛选,稀释参数宜设定为0。由于残差异质化处理没有改变遗传参数和方差组分,因此残差做同质化处理。以WOMBAT软件分析方差组分及遗传参数,计算结果达到收敛标准。【结果】影响如皋黄鸡体重的固定效应包括批次、层级、性别;42日龄如皋黄鸡体重受间接遗传效应影响,加性遗传力为0.54±0.02,总遗传力为0.66±0.06;同笼如皋黄鸡个体间以互助关系为主,加性遗传与间接遗传选择方向一致,遗传相关系数为0.41;育成期如皋黄鸡间接遗传方差不存在稀释效应;如皋黄鸡公鸡与母鸡间接遗传效应表现不同,遗传力、遗传相关系数也存在明显差异。【结论】间接遗传模型可用于蛋鸡早期体重遗传评估及选育。相比于传统动物模型,间接遗传模型可以额外获得遗传进展。
郭军,王克华,韩威,窦套存,王星果,胡玉萍,马猛,曲亮. 42日龄如皋黄鸡体重间接遗传效应分析[J]. 中国农业科学, 2022, 55(19): 3854-3861.
GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens[J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
表1
以单笼养殖量统计42日龄如皋黄鸡体重"
单笼养殖量 Cage size | 样本量(只) Sample size | 体重平均值 Mean (g) | 标准差 Standard deviation (g) | 均值的 95% 置信区间 95% CI | 极小值 Minimum (g) | 极大值 Maximum (g) | |
---|---|---|---|---|---|---|---|
下限 Low | 上限 Upper | ||||||
4 | 852 | 418.24b | 68.38 | 413.64 | 422.84 | 228 | 632 |
5 | 6 175 | 407.07c | 65.46 | 405.43 | 408.70 | 217 | 632 |
6 | 1 596 | 380.93e | 50.14 | 378.47 | 383.39 | 243 | 593 |
7 | 1 568 | 447.33a | 55.50 | 444.58 | 450.08 | 252 | 599 |
8 | 1 544 | 388.45d | 45.84 | 386.16 | 390.73 | 247 | 552 |
总数 Total | 11 735 | 407.25 | 63.15 | 406.11 | 408.39 | 217 | 632 |
表2
间接遗传效应亚模型信息准则参数"
稀释参数 Dilution parameter | 最大似然值对数 Log maximum likelihood | AIC | BIC |
---|---|---|---|
d=0.0 | -50781.95 | 101573.90 | 101610.74 |
d=0.1 | -50781.64 | 101573.28 | 101610.13 |
d=0.2 | -50781.32 | 101572.64 | 101609.49 |
d=0.3 | -50780.99 | 101630.84 | 101667.69 |
d=0.4 | -50780.66 | 101640.68 | 101677.53 |
d=0.5 | -50780.33 | 102135.95 | 102172.80 |
d=0.6 | -50780.07 | 101976.20 | 102013.05 |
d=0.7 | -50779.97 | 101820.13 | 101856.98 |
d=0.8 | -50780.10 | 101771.75 | 101808.60 |
d=0.9 | -50780.46 | 101710.10 | 101746.94 |
d=1.0 | -50780.97 | 101653.24 | 101690.09 |
表3
42日龄如皋黄鸡体重方差组分和遗传参数"
模型 Model | 加性遗传方差 Direct genetic variance | 间接遗传方差 Indirect genetic variance | 共同环境方差 Common environmental variance | 残差 Residual variance | 表型方差 Phenotypic variance | 总遗传效应 值方差 Total heritable variance | 狭义遗传力 Narrow heritability | 总遗传力 Total heritability | 加性-间接遗传相关系数 Correlation between direct and social genetic effects |
---|---|---|---|---|---|---|---|---|---|
经典模型 Classic model | 1455.05±87.01 | — | 230.19±18.20 | 1228.43±48.59 | 2713.66±52.96 | — | 0.54±0.02 | — | — |
稀释参数 Dilution parameter | |||||||||
d=0.0 | 1475.26±88.48 | 3.44±2.07 | 184.51±25.79 | 1046.00±49.18 | 2721.28±53.73 | 1809.08±188.18 | 0.54±0.02 | 0.66±0.06 | 0.41 |
d=0.2 | 1475.15±88.52 | 7.53±3.02 | 181.40±26.37 | 1045.96±49.29 | 2727.62±53.76 | 1825.82±172.57 | 0.54±0.02 | 0.67±0.06 | 0.38 |
d=0.4 | 1474.30±88.41 | 15.77±4.32 | 179.35±26.50 | 1045.35±49.37 | 2737.92±53.70 | 1831.06±153.41 | 0.54±0.02 | 0.67±0.05 | 0.35 |
d=0.6 | 1473.27±88.25 | 32.77±6.19 | 177.49±26.33 | 1044.51±49.41 | 2755.11±53.61 | 1835.55±135.03 | 0.53±0.02 | 0.67±0.04 | 0.32 |
d=0.8 | 1471.53±88.05 | 66.73±8.80 | 176.60±25.96 | 1043.05±49.44 | 2781.36±53.50 | 1830.00±119.57 | 0.53±0.02 | 0.66±0.03 | 0.28 |
d=1.0 | 1469.71±87.87 | 133.03±12.40 | 176.04±25.55 | 1041.38±49.44 | 2820.16±53.40 | 1821.05±108.20 | 0.52±0.02 | 0.65±0.03 | 0.25 |
按性别分组 Grouped by sex | |||||||||
公鸡 Rooster | 1210.07±132.11 | 10.13±6.55 | 147.46±50.99 | 1472.03±93.41 | 2867.21±75.84 | 1459.21±266.79 | 0.42±0.04 | 0.51±0.09 | 0.13 |
母鸡 Hen | 1267.38±91.13 | 0.27±2.42 | 176.47±29.97 | 920.74±53.59 | 2365.73±56.00 | 1426.16±185.81 | 0.54±0.03 | 0.60±0.07 | 0.90 |
[1] |
BIJMA P, MUIR W M, VAN ARENDONK J A M. Multilevel selection 1: Quantitative genetics of inheritance and response to selection. Genetics, 2007, 175(1): 277-288. doi: 10.1534/genetics.106.062711.
doi: 10.1534/genetics.106.062711 pmid: 17110494 |
[2] | MUIR W, SCHINCKEL A. Incorporation of competitive effects in breeding programs to improve productivity and animal well being//7th World Congress on Genetics Applied to Livestock Production. Montpellier, France, 2002: 14-07. |
[3] |
MUIR W M, BIJMA P, SCHINCKEL A. Multilevel selection with kin and non-kin groups, experimental results with Japanese quail (coturnix japonica). Evolution, 2013, 67(6): 1598-1606. doi: 10.1111/evo.12062.
doi: 10.1111/evo.12062 pmid: 23730755 |
[4] |
HERRERA-CÁCERES W, SÁNCHEZ J P. Selection for feed efficiency using the social effects animal model in growing Duroc pigs: Evaluation by simulation. Genetics, Selection, Evolution: GSE, 2020, 52(1): 53. doi: 10.1186/s12711-020-00572-4.
doi: 10.1186/s12711-020-00572-4 |
[5] | 国家畜禽遗传资源委员会组. 中国畜禽遗传资源志-家禽志. 北京: 中国农业出版社, 2011. |
National Livestock and Poultry Genetic Resources Committee. Animal Genetic Resources in China. Beijing: Chinese Agriculture Press, 2011. (in Chinese) | |
[6] | SCHMIDT-NIELSEN K S. Scaling:Why is Animal Size So Important? New York: Cambridge University Press, 1984. |
[7] |
THIRUVENKADAN A K, PRABAKARAN R, PANNEERSELVAM S. Broiler breeding strategies over the decades: An overview. World’s Poultry Science Journal, 2011, 67(2): 309-336. doi: 10.1017/S0043933911000328.
doi: 10.1017/S0043933911000328 |
[8] |
MUIR W M, AGGREY S E. Poultry Genetics, Breeding and Biotechnology. Wallingford: CABI, 2003. doi: 10.1079/9780851996608.0000.
doi: 10.1079/9780851996608.0000 |
[9] |
党李苹, 周雯馨, 刘瑞芳, 白云, 王哲鹏. 略阳乌鸡体重和产蛋数性状遗传参数估计. 中国农业科学, 2020, 53(17): 3620-3628. doi: 10.3864/j.issn.0578-1752.2020.17.018.
doi: 10.3864/j.issn.0578-1752.2020.17.018 |
DANG L P, ZHOU W X, LIU R F, BAI Y, WANG Z P. Estimation of genetic parameters of body weight and egg number traits of Lueyang black-boned chicken. Scientia Agricultura Sinica, 2020, 53(17): 3620-3628. doi: 10.3864/j.issn.0578-1752.2020.17.018. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.17.018 |
|
[10] |
郭军, 曲亮, 窦套存, 王星果, 沈曼曼, 胡玉萍, 王克华. 应用随机回归模型估计蛋鸡体重遗传参数. 中国农业科学, 2020, 53(11): 2297-2304. doi: 10.3864/j.issn.0578-1752.2020.11.015.
doi: 10.3864/j.issn.0578-1752.2020.11.015 |
GUO J, QU L, DOU T C, WANG X G, SHEN M M, HU Y P, WANG K H. Using random regression models to estimate genetic parameters on body weights in layers. Scientia Agricultura Sinica, 2020, 53(11): 2297-2304. doi: 10.3864/j.issn.0578-1752.2020.11.015. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.11.015 |
|
[11] |
ASK B, CHRISTENSEN O F, HEIDARITABAR M, MADSEN P, NIELSEN H M. The predictive ability of indirect genetic models is reduced when culled animals are omitted from the data. Genetics, Selection, Evolution: GSE, 2020, 52(1): 8. doi: 10.1186/s12711-020-0527-x.
doi: 10.1186/s12711-020-0527-x pmid: 32041518 |
[12] |
PILES M, DAVID I, RAMON J, CANARIO L, RAFEL O, PASCUAL M, RAGAB M, SÁNCHEZ J P. Interaction of direct and social genetic effects with feeding regime in growing rabbits. Genetics, Selection, Evolution: GSE, 2017, 49(1): 58. doi: 10.1186/s12711-017-0333-2.
doi: 10.1186/s12711-017-0333-2 |
[13] |
DAVID I, SÁNCHEZ J P, PILES M. Longitudinal analysis of direct and indirect effects on average daily gain in rabbits using a structured antedependence model. Genetics, Selection, Evolution: GSE, 2018, 50(1): 25. doi: 10.1186/s12711-018-0395-9.
doi: 10.1186/s12711-018-0395-9 pmid: 29747574 |
[14] |
CHU T T, HENRYON M, JENSEN J, ASK B, CHRISTENSEN O F. Statistical model and testing designs to increase response to selection with constrained inbreeding in genomic breeding programs for pigs affected by social genetic effects. Genetics, Selection, Evolution: GSE, 2021, 53(1): 1. doi: 10.1186/s12711-020-00598-8.
doi: 10.1186/s12711-020-00598-8 pmid: 33397289 |
[15] |
ELLEN E D, VISSCHER J, VAN ARENDONK J A M, BIJMA P. Survival of laying hens: Genetic parameters for direct and associative effects in three purebred layer lines. Poultry Science, 2008, 87(2): 233-239. doi: 10.3382/ps.2007-00374.
doi: 10.3382/ps.2007-00374 pmid: 18212365 |
[16] |
WALSH B, LYNCH M. Evolution and Selection of Quantitative Traits. Oxford: Oxford University Press, 2018. doi: 10.1093/oso/9780198830870.001.0001.
doi: 10.1093/oso/9780198830870.001.0001 |
[17] |
HEIDARITABAR M, BIJMA P, JANSS L, BORTOLUZZI C, NIELSEN H M, MADSEN P, ASK B, CHRISTENSEN O F. Models with indirect genetic effects depending on group sizes: A simulation study assessing the precision of the estimates of the dilution parameter. Genetics, Selection, Evolution: GSE, 2019, 51(1): 24. doi: 10.1186/s12711-019-0466-6.
doi: 10.1186/s12711-019-0466-6 pmid: 31146682 |
[18] |
VILLANUEVA R A M, CHEN Z J. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. Measurement: Interdisciplinary Research and Perspectives, 2019, 17(3): 160-167. doi: 10.1080/15366367.2019.1565254.
doi: 10.1080/15366367.2019.1565254 |
[19] |
MEYER K. WOMBAT: A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). Journal of Zhejiang University Science B, 2007, 8(11): 815-821. doi: 10.1631/jzus.2007.B0815.
doi: 10.1631/jzus.2007.B0815 |
[20] |
BIJMA P. The quantitative genetics of indirect genetic effects: A selective review of modelling issues. Heredity, 2014, 112 (1): 61-69. doi: 10.1038/hdy.2013.15.
doi: 10.1038/hdy.2013.15 pmid: 23512010 |
[21] |
ELLEN E D, RODENBURG T B, ALBERS G A A, BOLHUIS J E, CAMERLINK I, DUIJVESTEIJN N, KNOL E F, MUIR W M, PEETERS K, REIMERT I, SELL-KUBIAK E, VAN ARENDONK J A M, VISSCHER J, BIJMA P. The prospects of selection for social genetic effects to improve welfare and productivity in livestock. Frontiers in Genetics, 2014, 5: 377. doi: 10.3389/fgene.2014.00377.
doi: 10.3389/fgene.2014.00377 pmid: 25426136 |
[22] |
CHEN C Y, MISZTAL I, TSURUTA S, HERRING W O, HOLL J, CULBERTSON M. Influence of heritable social status on daily gain and feeding pattern in pigs. Journal of Animal Breeding and Genetics, 2010, 127(2): 107-112. doi: 10.1111/j.1439-0388.2009.00828.x.
doi: 10.1111/j.1439-0388.2009.00828.x pmid: 20433518 |
[23] | BESTMAN M, RUIS M, HEIJMANS J, MIDDELKOOP K V. 马闯, 马海艳译. 蛋鸡的信号: 禽业养殖管理实用指南. 北京: 中国农业科学技术出版社, 2014. |
BESTMAN M, RUIS M, HEIJMANS J, MIDDELKOOP K V. Layer Signals:A Practical Guide for Poultry-Oriented Management. Beijing: China Agricultural Science and Technology Press, 2014. (in Chinese) | |
[24] |
NIELSEN H M, ASK B, MADSEN P. Social genetic effects for growth in pigs differ between boars and gilts. Genetics, Selection, Evolution: GSE, 2018, 50(1): 4. doi: 10.1186/s12711-018-0375-0.
doi: 10.1186/s12711-018-0375-0 pmid: 29390956 |
[25] |
仲伟鹏, 罗坤, 孟宪红, 陈宝龙, 隋娟, 孔杰, 曹宝祥, 邢群, 栾生. 限制投喂环境下中国对虾体重的间接遗传效应分析. 中国水产科学, 2018, 25(6): 1245-1251. doi: 10.3724/SP.J.1118.2018.18015.
doi: 10.3724/SP.J.1118.2018.18015 |
ZHONG W P, LUO K, MENG X H, CHEN B L, SUI J, KONG J, CAO B X, XING Q, LUAN S. An analysis of the indirect genetic effect on the body weight of Fenneropenaeus chinensis under restrictive feeding conditions. Journal of Fishery Sciences of China, 2018, 25(6): 1245-1251. doi: 10.3724/SP.J.1118.2018.18015. (in Chinese)
doi: 10.3724/SP.J.1118.2018.18015 |
|
[26] |
BRICHETTE I, REYERO M I, GARCı́A C. A genetic analysis of intraspecific competition for growth in mussel cultures. Aquaculture, 2001, 192(2/3/4): 155-169. doi: 10.1016/S0044-8486(00)00439-7.
doi: 10.1016/S0044-8486(00)00439-7 |
[27] |
ALEMU S W, BERG P, JANSS L, BIJMA P. Estimation of indirect genetic effects in group-housed mink (Neovison vison) should account for systematic interactions either due to kin or sex. Journal of Animal Breeding and Genetics, 2016, 133(1): 43-50. doi: 10.1111/jbg.12163.
doi: 10.1111/jbg.12163 pmid: 25900536 |
[28] |
NÄTT D, AGNVALL B, JENSEN P. Large sex differences in chicken behavior and brain gene expression coincide with few differences in promoter DNA-methylation. PLoS ONE, 2014, 9(4): e96376. doi: 10.1371/journal.pone.0096376.
doi: 10.1371/journal.pone.0096376 |
[29] |
MOROI S, NISHIMURA K, IMAI N, KUNISHIGE K, SATO S, GOTO T. Rapid behavioral assay using handling test provides breed and sex differences in tameness of chickens. Brain and Behavior, 2019, 9(10): e01394. doi: 10.1002/brb3.1394.
doi: 10.1002/brb3.1394 |
[30] | CANARIO A, BIJMA P. Pig growth is affected by social genetic effects and social litter effects that depend on group size// Proceedings of the 9th World Congress on Genetic Applied to Livestock Production (WCGALP). 1-6 August 2010, Leipzig, Germany, 2010: 87-87. |
[31] | NIELSEN H, ASK B, CHRISTENSEN O, JANSS L, HEIDARITABAR M, MADSEN P. Social genetic effects for growth in Landrace pigs with varying group sizes//Proceedings of the 11th World Congress on Genetics Applied to Livestock Production. 2018: 11-16. |
[32] |
POULSEN B G, ASK B, NIELSEN H M, OSTERSEN T, CHRISTENSEN O F. Prediction of genetic merit for growth rate in pigs using animal models with indirect genetic effects and genomic information. Genetics Selection Evolution, 2020, 52: 58. doi: 10.1186/s12711-020-00578-y.
doi: 10.1186/s12711-020-00578-y |
[1] | 董明明,赵番番,葛建军,赵俊亮,王丹,胥磊,张梦华,种丽伟,黄锡霞,王雅春. 新疆地区荷斯坦牛长寿性与产奶量的遗传力估计及相关性分析[J]. 中国农业科学, 2022, 55(21): 4294-4303. |
[2] | 刘有春,刘威生,王兴东,杨艳敏,魏鑫,孙斌,张舵,杨玉春,刘成,李天忠. 基于越橘南高丛与北高丛正反交群体的果实贮藏相关性状筛选及其遗传倾向[J]. 中国农业科学, 2020, 53(19): 4045-4056. |
[3] | 党李苹,周雯馨,刘瑞芳,白云,王哲鹏. 略阳乌鸡体重和产蛋数性状遗传参数估计[J]. 中国农业科学, 2020, 53(17): 3620-3628. |
[4] | 郑浩,涂金敏,熊秀萍,张则凯,李龙云,黄黎斌,黄智勇,肖石军,郭源梅. 里岔黑猪和巴里杂交猪达100 kg体重日龄校正系数研究[J]. 中国农业科学, 2020, 53(12): 2493-2501. |
[5] | 郭军,曲亮,窦套存,王星果,沈曼曼,胡玉萍,王克华. 应用随机回归模型估计蛋鸡体重遗传参数[J]. 中国农业科学, 2020, 53(11): 2297-2304. |
[6] | 魏趁,赵俊金,黄锡霞,杨红杰,张梦华,葛建军,马光辉,张晓雪,王丹,尤震晨,胥磊,姜徽,赵番番,巨星,李云霞. 新疆地区西门塔尔牛核心群选择[J]. 中国农业科学, 2019, 52(5): 921-929. |
[7] | 赵勇,赵培方,胡鑫,赵俊,昝逢刚,姚丽,赵丽萍,杨昆,覃伟,夏红明,刘家勇. 基于农艺性状分级对317份甘蔗种质资源的评价[J]. 中国农业科学, 2019, 52(4): 602-615. |
[8] | 张剑搏,袁超,岳耀敬,郭健,牛春娥,王喜军,王丽娟,吕会芹,杨博辉. 不同动物模型对高山美利奴羊早期生长性状遗传参数估计的比较[J]. 中国农业科学, 2018, 51(6): 1202-1212. |
[9] | 周静静,马红彬,周瑶,王丽,牛佳伟,沈艳,许冬梅. 轮牧方式对荒漠草原滩羊牧食特征、体重及繁殖性能的影响[J]. 中国农业科学, 2017, 50(8): 1525-1534. |
[10] | 潘晨1, 胡燕2, 包满珠1, 艾叶1, 何燕红1. 孔雀草杂交组合遗传效应分析[J]. 中国农业科学, 2014, 47(12): 2395-2404. |
[11] | 俞咪娜, 胡建坤, 黄磊, 于俊杰, 尹小乐, 聂亚锋, 陈志谊, 刘永锋. 稻曲病菌T-DNA插入突变体5062的插入位点分析[J]. 中国农业科学, 2013, 46(9): 1790-1798. |
[12] | 胡艳, 徐文娟, 刘宏祥, 宋卫涛, 宋迟, 陶志云, 单艳菊, 李慧芳. 鸭发育早期下丘脑-垂体生长轴相关基因mRNA的表达特异性分析[J]. 中国农业科学, 2013, 46(17): 3712-3720. |
[13] | 张元跃, 贺喜. 多层非线性混合效应模型评价番鸭体重生长[J]. 中国农业科学, 2012, 45(3): 540-547. |
[14] | 王鹏宇, 官却扎西, 祁全青, 德毛, 张燕军, 王瑞军, 张文广, 李金泉. 不同模型对青海细毛羊生长性状遗传参数估计的比较[J]. 中国农业科学, 2012, 45(11): 2280-2287. |
[15] | 何余湧, 李完波, 张志燕, 杨明, 欧阳婧, 杨杰, 任军, 肖石军. 利用全基因组高通量SNP标记定位二花脸×沙子岭家系中的断奶体重QTL[J]. 中国农业科学, 2011, 44(22): 4694-4699. |
|