中国农业科学 ›› 2021, Vol. 54 ›› Issue (21): 4525-4538.doi: 10.3864/j.issn.0578-1752.2021.21.004
徐浩聪1(),姚波1,王权1,陈婷婷1,朱铁忠1,何海兵1,柯健1,尤翠翠1,吴小文2,郭爽爽3,武立权1,4,*(
)
收稿日期:
2020-11-23
接受日期:
2021-02-01
出版日期:
2021-11-01
发布日期:
2021-11-09
联系方式:
联系方式:徐浩聪,E-mail: 861389737@qq.com。
基金资助:
XU HaoCong1(),YAO Bo1,WANG Quan1,CHEN TingTing1,ZHU TieZhong1,HE HaiBing1,KE Jian1,YOU CuiCui1,WU XiaoWen2,GUO ShuangShuang3,WU LiQuan1,4,*(
)
Received:
2020-11-23
Accepted:
2021-02-01
Published:
2021-11-01
Online:
2021-11-09
摘要:
【目的】基于叶片反射光谱建立快速、无损监测水稻氮营养指数(nitrogen nutrition index,NNI)的估算模型。【方法】2018—2019年开展2个水稻品种(徽两优898和Y两优900)及5个氮肥梯度(施氮量为0、75、150、225和300 kg·hm-2,分别记为N0、N1、N2、N3、N4)的田间小区试验,测定关键生育期不同叶位叶片反射光谱和植株NNI,构建多种光谱指数的水稻NNI监测模型。【结果】单叶及叶位组合的敏感波段均分布在540 nm的绿光波长处,其与近红外波段构成的窄波段比值指数SR(R900,R540)可较好反演水稻NNI。但不同叶位叶片窄波段比值指数与水稻NNI的预测精度表现不同,顶3叶(L3)预测精度最好(R2=0.731,RMSE =0.130,RE=11.6%),顶2叶(L2)次之(R2=0.707,RMSE =0.136,RE =12.2%),顶1叶(L1)最差(R2=0.443,RMSE =0.187,RE =14.7%);顶2叶和顶3叶组合平均光谱(L23)的预测精度优于单叶水平和其他叶位组合(R2=0.740,RMSE =0.128,RE =11.5%)。再将窄波段比值指数SR(R900,R540)近红外与绿光区域分别重采样50 nm和10 nm,所构建的宽波段比值指数SR[AR(900±50),AR(540±10)]模型精度较SR(R900,R540)未明显降低,且在L23水平下2个模型的模型精度和预测精度基本一致(R2=0.740,RMSE =0.128,RE =11.5%)。水稻NNI小于1时与产量呈线性的正相关关系(P<0.05),大于1时产量趋于平稳。【结论】L2和L3叶片反射光谱为监测水稻NNI的敏感叶位,其中叶位组合L23可提高模型预测精度。基于叶片反射光谱构建的多种波段比值指数(SR(R900,R540)和SR[AR(900±50),AR(540±10)])可快速估测水稻NNI,从而为不同传感器对水稻氮营养指数估测监测研究提供了理论依据。
徐浩聪, 姚波, 王权, 陈婷婷, 朱铁忠, 何海兵, 柯健, 尤翠翠, 吴小文, 郭爽爽, 武立权. 基于叶片反射光谱估测水稻氮营养指数[J]. 中国农业科学, 2021, 54(21): 4525-4538.
XU HaoCong, YAO Bo, WANG Quan, CHEN TingTing, ZHU TieZhong, HE HaiBing, KE Jian, YOU CuiCui, WU XiaoWen, GUO ShuangShuang, WU LiQuan. Determination of Suitable Band Width for Estimating Rice Nitrogen Nutrition Index Based on Leaf Reflectance Spectra[J]. Scientia Agricultura Sinica, 2021, 54(21): 4525-4538.
表2
本研究采用的高光谱指数列表"
光谱指数 Spectral index | 计算公式 Algorithm | 参考文献 Reference |
---|---|---|
比值光谱指数 Simple ratio spectral index (SR) | R1 / R2 | 本研究 This study |
归一化差值光谱指数 Normalized difference spectral index (ND) | (R1 - R2)/(R1 + R2) | 本研究This study |
修正红边归一化指数 Modified red edge normalized difference vegetation index (MSR 705) | (R750-R705)/(R750+2×R445) | [12] |
红边归一化指数 Red edge normalized difference vegetation index (ND 705) | (R750- R705)/(R750+ R705) | [13] |
比值指数-ldB Ratio index-1dB (RI-ldB) | R735 /R720 | [14] |
Vogelmann 红边指数 Vogelman red edge index (VOG) | R740 / R720 | [15] |
双峰冠层氮指数 Double-peak canopy nitrogen index (DCNI) | (R720-R700)/(R700-R670)/(R720-R670+0.03) | [16] |
线性内插法红边位置 Red edge position: linear interpolation method (REPLI) | 700+40×[(R670+R780)/2-R700] /(R740-R700) | [17] |
比值植被指数II Ratio Vegetation Index Ⅱ(RVI Ⅱ) | R810 / R560 | [18] |
表3
NNI在品种、生育期和氮肥处理下的方差分析"
分组因子 Grouping factor | 变异来源 Variation source | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F值 F-value | P值 P-value |
---|---|---|---|---|---|---|
氮肥处理 Nitrogen rate | 组间 Between groups | 2.643 | 4 | 0.661 | 31.745 | 0 |
组内 Within groups | 1.561 | 75 | 0.021 | |||
总计 Total | 4.203 | 79 | ||||
品种 Variety | 组间 Between groups | 0.231 | 3 | 0.077 | 1.475 | 0.228 |
组内 Within groups | 3.972 | 76 | 0.052 | |||
总计 Total | 4.203 | 79 | ||||
生育期 Growth stage | 组间 Between groups | 0.094 | 1 | 0.094 | 1.782 | 0.186 |
组内 Within groups | 4.109 | 78 | 0.053 | |||
总计 Total | 4.203 | 79 |
表4
不同时期典型光谱指数与水稻NNI的相关系数"
时期 Stage | 叶位 Leaf position | MSR705 | ND705 | RI-1dB | VOG | DCNI | REPLI | RVI Ⅱ |
---|---|---|---|---|---|---|---|---|
分蘖期 Tillering stage | 顶1叶(L1) | 0.483** | 0.534** | 0.561** | 0.564** | 0.607** | 0.478** | 0.553** |
顶2叶(L2) | 0.555** | 0.479** | 0.444** | 0.443** | 0.367** | 0.436** | 0.563** | |
顶3叶(L3) | 0.311** | 0.394** | 0.406** | 0.409** | 0.718** | 0.488** | 0.398** | |
顶1、2叶平均(L23) | 0.441** | 0.456** | 0.446** | 0.448** | 0.555** | 0.488** | 0.499** | |
拔节期 Jointing stage | 顶1叶(L1) | 0.568** | 0.541** | 0.538** | 0.536** | 0.253** | 0.465** | 0.657** |
顶2叶(L2) | 0.717** | 0.665** | 0.648** | 0.649** | 0.770** | 0.538** | 0.792** | |
顶3叶(L3) | 0.765** | 0.742** | 0.718** | 0.717** | 0.652** | 0.669** | 0.810** | |
顶2、3叶平均(L23) | 0.791** | 0.748** | 0.721** | 0.721** | 0.721** | 0.655** | 0.835** | |
孕穗期 Booting stage | 顶1叶(L1) | 0.620** | 0.635** | 0.711** | 0.712** | 0.278** | 0.629** | 0.686** |
顶2叶(L2) | 0.781** | 0.812** | 0.833** | 0.835** | 0.476** | 0.772** | 0.859** | |
顶3叶(L3) | 0.730** | 0.755** | 0.758** | 0.758** | 0.485** | 0.714** | 0.783** | |
顶2、3叶平均(L23) | 0.763** | 0.790** | 0.807** | 0.808** | 0.490** | 0.749** | 0.837** | |
抽穗期 Heading stage | 顶1叶(L1) | 0.462** | 0.511** | 0.510** | 0.516** | 0.519** | 0.557** | 0.521** |
顶2叶(L2) | 0.586** | 0.652** | 0.684** | 0.690** | 0.714** | 0.592** | 0.730** | |
顶3叶(L3) | 0.546** | 0.589** | 0.635** | 0.643** | 0.600** | 0.432** | 0.706** | |
顶2、3叶平均(L23) | 0.593** | 0.649** | 0.696** | 0.703** | 0.646** | 0.538** | 0.734** |
表5
典型光谱指数与水稻NNI汇总数据的相关系数"
叶位 Leaf position | MSR705 | ND705 | RI-1dB | VOG | DCNI | REPLI | RVI Ⅱ |
---|---|---|---|---|---|---|---|
顶1叶(L1) | 0.571** | 0.576** | 0.570** | 0.572** | 0.477** | 0.584** | 0.621** |
顶2叶(L2) | 0.708** | 0.726** | 0.741** | 0.745** | 0.575** | 0.710** | 0.798** |
顶3叶(L3) | 0.629** | 0.660** | 0.698** | 0.703** | 0.577** | 0.543** | 0.739** |
顶2、3叶平均(L23) | 0.676** | 0.702** | 0.733** | 0.738** | 0.587** | 0.642** | 0.781** |
样本量 160 个 Sample volume is 160 |
表6
水稻NNI(y)与不同光谱指数(x)的定量关系(n=160)及模型检验效果(n=249)"
叶位 Leaf position | 光谱指数 Spectral index | 回归方程 Regression equation | 模型精度 Model precision (R2) | 预测精度 Prediction precision (R2) | 均方根误 RMSE | 相对误差 RE (%) | ||
---|---|---|---|---|---|---|---|---|
顶一叶(L1) | SR(R900,R540) | y=0.2488x+0.1267 | 0.390 | 0.443 | 0.187 | 14.7 | ||
SR[AR(900±50),AR(540±10)] | y=0.2454x+0.1307 | 0.388 | 0.441 | 0.187 | 14.7 | |||
顶二叶(L2) | SR(R900,R540) | y=0.3943x-0.3199 | 0.657 | 0.707 | 0.136 | 12.2 | ||
SR[AR(900±50),AR(540±10)] | y=0.3896x-0.3154 | 0.654 | 0.706 | 0.136 | 12.2 | |||
顶三叶(L2) | SR(R900,R540) | y=0.3019x-0.0364 | 0.557 | 0.731 | 0.130 | 11.6 | ||
SR[AR(900±50),AR(540±10)] | y=0.2988x-0.0344 | 0.556 | 0.729 | 0.130 | 11.6 | |||
顶二、顶三光谱平均(L23) | SR(R900,R540) | y=0.3556x-0.1997 | 0.625 | 0.740 | 0.128 | 11.5 | ||
SR[AR(900±50),AR(540±10)] | y=0.3517x-0.1967 | 0.624 | 0.740 | 0.128 | 11.5 | |||
顶一、顶二、顶三光谱平均(L123) | SR(R900,R540) | y=0.3645x-0.2208 | 0.618 | 0.720 | 0.133 | 11.2 | ||
SR[AR(900±50),AR(540±10)] | y=0.3602x-0.217 | 0.616 | 0.718 | 0.133 | 11.3 |
[1] |
ZHAO D, REDDY K R, KAKANI V G, REDDY V R. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy, 2005, 22(4):391-403.
doi: 10.1016/j.eja.2004.06.005 |
[2] |
GASTAL F, BLANGER G. The effects of nitrogen fertilization and the growing season on photosynthesis of field-grown tall fescue (Festuca arundinacea Schreb.) canopies. Annals of Botany, 1993, 72(5):401-408.
doi: 10.1006/anbo.1993.1125 |
[3] |
PENG S B, BURESH R J, HUANG J L, YANG J C, ZOU Y B, ZHONG X H, WANG G H, ZHANG F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research, 2006, 96(1):37-47.
doi: 10.1016/j.fcr.2005.05.004 |
[4] |
BENTJE B, BJERG P L, SONG X F, JAKOBSEN R. Field scale interaction and nutrient exchange between surface water and shallow groundwater in the Baiyang Lake region, North China Plain. Journal of Environmental Sciences, 2016, 45(7):60-75.
doi: 10.1016/j.jes.2015.11.021 |
[5] |
ZHAO B, ATA-UL-KARIM S T, LIU Z D, NING D F, XIAO J F, LIU Z G, QIN A Z, NAN J Q, DUAN A W. Development of a critical nitrogen dilution curve based on leaf dry matter for summer maize. Field Crops Research, 2017, 208:60-68.
doi: 10.1016/j.fcr.2017.03.010 |
[6] | 贺志远, 朱艳, 李艳大, 刘小军, 曹强, 曹卫星, 汤亮. 中国南方双季稻氮营养指数及产量估算模型研究. 南京农业大学学报, 2017, 40(1):11-19. |
HE Z Y, ZHU Y, LI Y D, LIU X J, CAO Q, CAO W X, TANG L. Study on estimation model for nitrogen nutrition index and yield on double cropping rice in southern China. Journal of Nanjing Agricultural University, 2017, 40(1):11-19. (in Chinese) | |
[7] | 杜宇笑, 李鑫格, 张羽, 程涛, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 不同产量水平下稻茬小麦的氮素营养指标特征. 植物营养与肥料学报, 2020, 26(8):1420-1429. |
DU Y X, LI X G, ZHANG Y, CHENG T, LIU X J, TIAN Y C, ZHU Y, CAO W X, CAO Q. Variation in nitrogen status indicators with grain yield level for winter wheat after rice. Journal of Plant Nutrition and Fertilizers, 2020, 26(8):1420-1429. (in Chinese) | |
[8] | 贾彪, 付江鹏. 基于叶面积指数构建滴灌玉米营养生长期临界氮稀释曲线. 农业工程学报, 2020, 36(6):66-73. |
JIA B, FU J P. Critical nitrogen dilution curve of drip-irrigated maize at vegetative growth stage based on leaf area index. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(6):66-73. (in Chinese) | |
[9] | 马露露, 吕新, 张泽, 马革新, 海兴岩. 基于临界氮浓度的滴灌棉花氮素营养诊断模型研究. 农业机械学报, 2018, 49(2):277-283. |
MA L L, LÜ X, ZHANG Z, MA G X, HAI X Y. Establishment of nitrogen nutrition diagnosis model for drip-irrigation cotton based on critical nitrogen concentration. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2):277-283. (in Chinese) | |
[10] |
ZHAO B, LIU Z D, ATA-UL-KARIM S T, XIAO J F, LIU Z G, QIN A Z, NING D F, NAN J Q, DUAN A W. Rapid and nondestructive estimation of the nitrogen nutrition index in winter barley using chlorophy Ⅱ measurements. Field Crops Research, 2016, 185:59-68.
doi: 10.1016/j.fcr.2015.10.021 |
[11] |
AKRAM M. Effects of nitrogen application on chlorophyll content, water relations, and yield of maize hybrids under saline conditions. Communications in Soil Science and Plant Analysis, 2014, 45(10):1336-1356.
doi: 10.1080/00103624.2013.875199 |
[12] |
SIMS D A, GAMON J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002, 81(2/3):337-354.
doi: 10.1016/S0034-4257(02)00010-X |
[13] |
GITELSON A, MERZLYAK M N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves spectral features and relation to chlorophyll estimation. Journal of Plant Physiology, 1994, 143(3):286-292.
doi: 10.1016/S0176-1617(11)81633-0 |
[14] |
GUPTA R K, VIJAYAN D, PRASAD T S. Comparative analysis of red-edge hyperspectral indices. Advances in Space Research, 2003, 32(11):2217-2222.
doi: 10.1016/S0273-1177(03)90545-X |
[15] |
VOGELMANN J E, ROCK B N, MOSS D M. Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 1993, 14(8):1563-1575.
doi: 10.1080/01431169308953986 |
[16] |
CHEN P F, HABOUDANE D, TREMBLAY N, WANG J H, VIGNEAULT P, LI B G. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sensing of Environment, 2010, 114(9):1987-1997.
doi: 10.1016/j.rse.2010.04.006 |
[17] |
CHO M A, SKIDMORE A K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sensing of Environment, 2006, 101(2):181-193.
doi: 10.1016/j.rse.2005.12.011 |
[18] |
XUE L H, CAO W X, LUO W H, DAI T B, ZHU Y. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal, 2004, 96(1):135-142.
doi: 10.2134/agronj2004.0135 |
[19] | 曾水生, 李艳大, 舒时富, 陈立才, 叶春, 贺志远, 张晨, 曾一凡. 光谱技术在水稻生长监测中的应用研究进展. 农学学报, 2015, 5(2):100-104. |
ZENG S S, LI Y D, SHU S F, CHEN L C, YE C, HE Z Y, ZHANG C, ZENG Y F. Application of spectrum technique in monitoring rice growth. Journal of Agriculture, 2015, 5(2):100-104. (in Chinese) | |
[20] | 梁惠平, 刘湘南. 玉米氮营养指数的高光谱计算模型. 农业工程学报, 2010, 26(1):264-269. |
LIANG H P, LIU X N. Model for calculating corn nitrogen nutrition index using hyper-spectral data. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1):264-269. (in Chinese) | |
[21] | 王仁红, 宋晓宇, 李振海, 杨贵军, 郭文善, 谭昌伟, 陈立平. 基于高光谱的冬小麦氮素营养指数估测. 农业工程学报, 2014, 30(19):191-198. |
WANG R H, SONG X Y, LI Z H, YANG G J, GUO W S, TAN C W, CHEN L P. Estimation of winter wheat nitrogen nutrition index using hyperspectral remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(19):191-198. (in Chinese) | |
[22] | 姚霞. 小麦冠层和单叶氮素营养指标的高光谱监测研究[D]. 南京:南京农业大学, 2009. |
YAO X. Monitoring nitrogen stayus at canopy and leaf scales with hyperspectral sensing in wheat[D]. Nanjing: Nanjing Agricultuarl University, 2009. (in Chinese) | |
[23] | 田永超, 杨杰, 姚霞, 曹卫星, 朱艳. 利用叶片高光谱指数预测水稻群体叶层全氮含量. 作物学报, 2010, 36(9):1529-1537. |
TIAN Y C, YANG J, YAO X, CAO W X, ZHU Y. Monitoring canopy leaf nitrogen concentration based on leaf hyperspectral indices in rice. Acta Agronomica Sinica, 2010, 36(9):1529-1537. (in Chinese) | |
[24] | 李刚华, 薛利红, 尤娟, 王绍华, 丁艳锋, 吴昊, 杨文祥. 水稻氮素和叶绿素SPAD叶位分布特点及氮素诊断的叶位选择. 中国农业科学, 2007, 40(6):1127-1134. |
LI G H, XUE L H, YOU J, WANG S H, DING Y F, WU H, YANG W X. Spatial distribution of leaf N content and SPAD value and determination of the suitable leaf for N diagnosis in rice. Scientia Agricultura Sinica, 2007, 40(6):1127-1134. (in Chinese) | |
[25] |
赵犇, 姚霞, 田永超, 刘小军, 曹卫星, 朱艳. 基于上部叶片SPAD值估算小麦氮营养指数. 生态学报, 2013, 33(3):916-924.
doi: 10.5846/stxb |
ZHAO B, YAO X, TIAN Y C, LIU X J, CAO W X, ZHU Y. Estimation of nitrogen nutrient index on SPAD value of top leaves in wheat. Acta Ecologica Sinica, 2013, 33(3):916-924. (in Chinese)
doi: 10.5846/stxb |
|
[26] |
INOUE Y, SAKAIYA E, ZHU Y, TAKAHASHI W. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements. Remote Sensing of Environment, 2012, 126:210-221.
doi: 10.1016/j.rse.2012.08.026 |
[27] |
TIAN Y C, GU K J, CHU X, YAO X, CAO W X, ZHU Y. Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice. Plant and Soil, 2014, 376(1/2):193-209.
doi: 10.1007/s11104-013-1937-0 |
[28] | 宋红燕, 胡克林, 彭希. 基于高光谱技术的覆膜旱作水稻植株氮含量及籽粒产量估算. 中国农业大学学报, 2016, 21(8):27-34. |
SONG H Y, HU K L, PENG X. Crop nitrogen content diagnosis and yield estimation in ground cover rice production system based on hyperspectral data. Journal of China Agricultural University, 2016, 21(8):27-34. (in Chinese) | |
[29] | LEMAIRE G, GASTAL F, SALETTE J. N Uptake and Distribution in Plant Canopies. Springer: Berlin, 1997, 25:3-45. |
[30] | 姚霞, 朱艳, 冯伟, 田永超, 曹卫星. 监测小麦叶片氮积累量的新高光谱特征波段及比值植被指数. 光谱学与光谱分析, 2009, 29(8):2191-2195. |
YAO X, ZHU Y, FENG W, TIAN Y C, CAO W X. Exploring novel hyperspectral band and key index for leaf nitrogen accumulation in wheat. Spectroscopy and Spectral Analysis, 2009, 29(8):2191-2195. (in Chinese) | |
[31] |
STROPPIANA D, MBOSCHETTI M, BRIVIO P A, BOCCHI S. Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field Crops Research, 2009, 111(1/2):119-129.
doi: 10.1016/j.fcr.2008.11.004 |
[32] |
杜宇笑, 李鑫格, 王雪, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 不同产量水平稻茬小麦氮素需求特征研究. 作物学报, 2020, 46(11):1780-1789.
doi: 10.3724/SP.J.1006.2020.01027 |
DU Y X, LI X G, WANG X, LIU X J, TIAN Y C, ZHU Y, CAO W X, CAO Q. Nitrogen demand characteristics with different grain yield levels for wheat after rice. Acta Agronomica Sinica, 2020, 46(11):1780-1789. (in Chinese)
doi: 10.3724/SP.J.1006.2020.01027 |
|
[33] |
ATA-UL-KARIM S T, LIU X J, LU Z Z, ZHENG H B, CAO W X, ZHU Y. Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve. Field Crops Research, 2017, 201:32-40.
doi: 10.1016/j.fcr.2016.10.009 |
[34] | 陈志强, 王磊, 白由路, 杨俐苹, 卢艳丽, 王贺, 王志勇. 玉米叶片的光谱响应及其氮素含量预测研究. 光谱学与光谱分析, 2013, 33(4):1066-1070. |
CHEN Z Q, WANG L, BAI Y L, YANG L P, LU Y L, WANG H, WANG Z Y. Spectral response of maize leaves and prediction of their nitrogen content. Spectroscopy and Spectral Analysis, 2013, 33(4):1066-1070. (in Chinese) | |
[35] | 张银杰, 王磊, 白由路, 杨俐苹, 卢艳丽, 张静静, 李格. 基于高光谱分析的玉米叶片氮含量分层诊断研究. 光谱学与光谱分析, 2019, 39(9):2829-2835. |
ZHANG Y J, WANG L, BAI Y L, YANG L P, LU Y L, ZHANG J J, LI G. Nitrogen nutrition diagnostic based on hyperspectral analysis about different layers leaves in maize. Spectroscopy and Spectral Analysis, 2019, 39(9):2829-2835. (in Chinese) | |
[36] | 刘忠, 万炜, 黄晋宇, 韩已文, 王佳莹. 基于无人机遥感的农作物长势关键参数反演研究进展. 农业工程学报, 2018, 34(24):60-71. |
LIU Z, WAN W, HUANG J Y, HAN Y W, WANG J Y. Progress on key parameters inversion of crop growth based on unmanned aerial vehicle remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(24):60-71. (in Chinese) | |
[37] | 李振. 基于高光谱玉米氮素营养与生长指标的监测[D]. 泰安: 山东农业大学, 2012. |
LI Z. Monitoring nitrogen status and growth characters with hyper-spectral in maize[D]. Taian:Shandong Agricutural University, 2012. (in Chinese) | |
[38] |
ZHAO B, DUAN A W, ATA-UL-KARIM S T, LIU Z D, CHEN Z F, GONG Z H, ZHANG J Y, XIAO J F, LIU Z G, QIN A Z, NING D F. Exploring new spectral bands and vegetation indices for estimating nitrogen nutrition index of summer maize. European Journal of Agronomy, 2018, 93:113-125.
doi: 10.1016/j.eja.2017.12.006 |
[1] | 谭力治, 赵毅强. 全基因组关联分析中混合模型的原理、优化与应用[J]. 中国农业科学, 2023, 56(9): 1617-1632. |
[2] | 孙启滨, 王建楠, 李毅念, 何瑞银, 丁启朔. 大田不同播种间距单株小麦根长密度动态研究[J]. 中国农业科学, 2023, 56(8): 1456-1470. |
[3] | 李浩, 陈金, 王洪亮, 柳开楼, 韩天富, 都江雪, 申哲, 刘立生, 黄晶, 张会民. 红壤性水稻土有机无机复合体中碳氮特征对长期施肥的响应[J]. 中国农业科学, 2023, 56(7): 1333-1343. |
[4] | 温一博, 陈淑婷, 徐正进, 孙健, 徐铨. DEP1、Gn1a和qSW5组合应用调控水稻穗部性状[J]. 中国农业科学, 2023, 56(7): 1218-1227. |
[5] | 李儒香, 周恺, 王大川, 李巧龙, 向奥妮, 李璐, 李苗苗, 向思茜, 凌英华, 何光华, 赵芳明. 水稻CSSL-Z481代换片段携带的穗部性状QTL分析及次级代换系培育[J]. 中国农业科学, 2023, 56(7): 1228-1247. |
[6] | 赵梓钧, 吴如会, 王硕, 张君, 游静, 段倩楠, 唐俊, 张新芳, 韦秘, 刘金艳, 李云峰, 何光华, 张婷. 水稻PDL2的突变导致小穗外稃退化[J]. 中国农业科学, 2023, 56(7): 1248-1259. |
[7] | 朱洪慧, 李映姿, 高远卓, 林泓, 王成洋, 晏紫仪, 彭瀚平, 李田野, 熊茂, 李云峰. 水稻短宽粒基因SWG1的图位克隆[J]. 中国农业科学, 2023, 56(7): 1260-1274. |
[8] | 张绩, 周上铃, 何发, 刘莉莎, 张玉娟, 何晋宇, 杜晓秋. 水稻α-淀粉酶基因的表达模式与颖花开放的关系[J]. 中国农业科学, 2023, 56(7): 1275-1282. |
[9] | 贺江, 丁颖, 娄向弟, 姬东玲, 张向向, 王永慧, 张伟杨, 王志琴, 王伟露, 杨建昌. 水稻分蘖期干物质积累对大气CO2浓度升高和氮素营养的综合响应差异及其生理机制[J]. 中国农业科学, 2023, 56(6): 1045-1060. |
[10] | 常春义, 曹元, Ghulam Mustafa, 刘红艳, 张羽, 汤亮, 刘兵, 朱艳, 姚霞, 曹卫星, 刘蕾蕾. 白粉病对小麦光合特性的影响及病害严重度的定量模拟[J]. 中国农业科学, 2023, 56(6): 1061-1073. |
[11] | 郑文燕, 常源升, 何平, 何晓文, 王森, 高文胜, 李林光, 王海波. ‘鲁丽’ב红1#’苹果杂交群体全基因组KASP标记开发及验证[J]. 中国农业科学, 2023, 56(5): 935-950. |
[12] | 谢军, 尹学伟, 魏灵, 王子芳, 李清虎, 张晓春, 鲁远源, 王秋月, 高明. 垄作直播控制灌溉对水稻产量和温室气体排放的影响[J]. 中国农业科学, 2023, 56(4): 697-710. |
[13] | 刘刚, 夏快飞, 吴艳, 张明永, 张再君, 杨金松, 邱东峰. 水稻耐热新种质R203的创制与应用[J]. 中国农业科学, 2023, 56(3): 405-415. |
[14] | 赵建涛, 杨开鑫, 王旭哲, 马春晖, 张前兵. 施磷对苜蓿叶片生理参数及抗氧化能力的影响[J]. 中国农业科学, 2023, 56(3): 453-465. |
[15] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
|